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Synopsis

Evidence obtained from chemical properties and infrared spectra shows that the so-called triform- 
oxime or trimeric formaldehyde oxime is actually a chain-polymer. 1 he known acetyl and benzoyl 
derivatives of formaldehyde oxime are, however, derivatives of a cyclic trimer, 1,3,5-trihydroxyhexa- 
hydro-1,3,5-triazine, and are derived neither from the polymer, nor from monomeric formaldehyde 
oxime. Similarly, the known hydrochloride, (CH2NOH) 3HC1, and also other salts, contain the cyclic 
trimer, but on neutralization they depolymerize to formaldehyde oxime.

The cyclic trimer was isolated from partially polymerized formaldehyde oxime in the form of a 
molecular complex containing dioxane and in a pure state from a neutralized solution of the hydro
chloride in ethanol. Both products are rapidly transformed into the insoluble polymer.

An analysis of the 1H NMR spectra of neutralized solutions of (CH2NOH) 3HC1 in deuterium oxide 
has shown that, in aqueous solution, an equilibrium exists between monomeric and trimeric formal
dehyde oxime which, at higher pH values, is shifted towards the monomeric form. The compound, 
which can be extracted with ether from aqueous solutions at pH ca. 8, is the monomer but, with 
HC1, CH31, (CH3CO)2O, etc., it gives derivatives of the trimer.
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I. Introduction
While investigating the composition of the ligand in the coordination compounds1 
prepared from “triformoxime hydrochloride”, (H2CNOH)3 • HC1 (7), we became 
interested in the nature of the polymer of formaldehyde oxime which is usually 
described as a trimer (e.g. in Beilstein’s handbook and Rodd’s Chemistry of Carbon 
Compounds). Its properties, however, are much more like those ofa chain polymer. 
It is an amorphous solid, insoluble in most solvents, and in fact looks much like 
paraformaldehyde. Like the latter, it is depolymerized on heating and gives 
vapour of monomeric formaldehyde oxime. The spectroscopic properties of 
gaseous, monomeric formaldehyde oxime are well known; both its infrared (IR) 
spectrum2-3 and its microwave spectrum4-3 have been investigated. Condensation 
of the vapour yields either the white solid polymer (2) or the liquid monomer (5). 
Fhc latter is rapidly transformed into the same white solid. Decomposition of 2 
and 3 sometimes takes place explosively on heating, with the formation of water 
and hydrogen cyanide.

Monomeric formaldehyde oxime (5) was obtained by Dunstan and Boss? by 
distillation of the ether extract of an aqueous solution of formaldehyde oxime. 
A liquid distils at 83 °C/760 mmHg leaving a residue (2b) which is insoluble in 
ether. It is difficult to eliminate ether completely from the distillate but we have 
otherwise confirmed the results of Dunstan and Bossi. The 'H NMR spectrum of 
the liquid in CDC13 shows only signals for monomeric formaldehyde oxime (see 
Section IV) and none which may be ascribed to a polymer.

II. Properties of the Polymeric Products

fhc following polymeric products were shown to give almost identical infrared 
spectra.
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2a. The white amorphous solid obtained according to Scholl,6 by mixing con
centrated solutions of hydroxylamine and formaldehyde.

2b. The white solid obtained according to Dunstan and Bossi,' by evaporation 
of the ether extract of a neutralized aqueous solution of hydroxylammonium 
chloride and formaldehyde.

2c. The white solid which is formed from 2a or 2b on sublimation.
2d. The white solid which is formed as a residue, and in various parts of the 

distillation apparatus, during distillation of the monomer.
2e. The white solid which is formed from the liquid monomer (5) at room tem

perature (or slowly even at —80 °C) or which separates rapidly from a solution 
of monomeric formaldehyde oxime in carbon tetrachloride.

The polymeric formaldehyde oxime is a white solid which depolymerizes at 
132-134 °C. Condensation of the vapour usually yields the polymer again. The 
mass spectrum of the vapour shows the presence of the molecular ion of the 
monomer with no indication of the formation of oligomers. The polymer is in
soluble in common solvents, but on prolonged heating dissolves both in water and 
in some organic solvents; it does not separate again when the solutions are cooled. 
Ebulliometric measurements in acetone indicate the solute to be monomeric 
formaldehyde oxime (found M = 50, calc. 45).

Although all the above mentioned products (2o-e) exhibit identical infrared 
spectra and show no significant differences in their C, H, N analyses, the reaction 
with nickel(II) chloride1 reveals a very remarkable difference between freshly 
prepared products formed by polymerization of the monomer {2b-e) and the 
products formed directly from aqueous formaldehyde and hydroxylamine {2a} : 
the former immediately gives a very intense colour while 2a gives no reaction (or 
slowly develops a very faint colour) ; however, if 2a is first dissolved in hydro
chloric acid, the same intense colour is obtained as with the other products on 
addition of NiCl2 and NaOH. This difference is explained as being due to the 
presence of the genuine trimer (see section V) in freshly prepared polymerization 
products ; the latter lose the ability to give a positive nickel reaction after some time 
because the trimer is transformed into the polymer.

Polymerization of formaldehyde oxime apparently docs not take place in dilute 
aqueous solution. When an aqueous solution of hydroxylammonium chloride is 
reacted with formaldehyde and the solution is then neutralized no separation of 
the polymer occurs; according to our NAIR spectroscopic investigation (section 
IV) the initially formed “triformoxime hydrochloride” (7) on neutralization is 
converted almost quantitatively into monomeric formaldehyde oxime. On the 
other hand, if the hydroxylammonium chloride is neutralized before the addition 
of formaldehyde, separation of the polymer begins in a few minutes. Clearly the 
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polymer is not formed in aqueous solution by polymerization but by polyconden
sation :

n HO-CH.,OH 4- n II X H —► HO-CH,-N-CH,-N • • • 
i I ' I

OH OH OH

In this case there is the possibility that the second terminal group is also an 
HO-CH2 group. This circumstance, together with differences in degree of poly
merization, may account for some observed variation in the properties of the poly
meric products.

The polymeric products dissolve rapidly in hydrochloric acid, but it takes hours 
or even days to dissolve them in boiling water (product 2a dissolves more slowly 
that products 2b-e}. Dissolution is much accelerated by the addition of NaCl and 
occurs with depolymerization; monomeric formaldehyde oxime distils over with 
the steam and polymerizes again in the condenser. Some hydrolysis also takes 
place. After prolonged boiling, the aqueous solution contains formaldehyde and 
hydroxylamine but (according to the nickel reaction) no monomeric or trimeric 
formaldehyde oxime. When a neutralized solution of hydroxylammonium chloride 
and formaldehyde is evaporated in vacuo a solid is formed in the condenser. This 
solid exhibits the same infrared spectrum as the other polymer samples.

The infrared spectra of the polymers are rather simple and apparently do not 
differ much from the spectrum of gaseous formaldehyde oxime, investigated by 
Califano and Lùttke.3 However, most of the bands should be re-assigned (see the 
detailed discussion of the infrared spectra of the polymers in the following publica
tion)8. Only the following results from the investigation will be mentioned here: 
We succeeded in recording the infrared spectrum of monomeric formaldehyde 
oxime as a liquid film although the liquid solidified in less than 5 min. The spec
trum exhibited the v(C —N) band clearly at 1630 cm-1, the CH2 twisting band at 
780 cm-1 and the v(N-O) band (vs) at 900 cm-1 (assignments according to Ref. 
3). The solidification of the film resulted in the disappearance of the two first men
tioned bands and a shift of the 900 cm-1 band to 840 cm-1.

The infrared spectra of the polymeric products support the conclusion that the 
latter are chain polymers analogous to paraformaldehyde; the spectra are not 
compatible with the assumption that the polymer is “triformoxime”, i.e. 1,3,5- 
trihydroxyhexahydro-l,3,5-triazine. The possibility9 that the polymer might be a 
dimer or trimer analogous to glycolaldehyde, glyceraldehyde or dihydroxyacetone 
is also ruled out by the infrared spectra. Furthermore, from the chemical properties 
of the polymers, structures of the latter type seem improbable. The infrared 
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spectra exhibit no bands attributable to ether linkages, so that the possibility of 
the chain containing CH2-O-CH2 groups seems to be ruled out.

A polymer analogous to paraformaldehyde would have the formula:

HO-(CH2-N-)„H or (CH3NO)n + H2O
i
OH

One of the terminal groups could, however, be an oxime group:

HO-(CH2-N-)n_1CH-NOH or (CH3NO)n +O
I

OH

A structure of the latter type could conceivably result from an oxygen catalysed 
polymerization of monomeric formaldehyde oxime.

When the polymer is formed in solution from hydroxylamine and formaldehyde 
it may contain two -CH2OH terminal groups:

HO-(CH2-N-)n_1CH2OH or (CH3NO)n - N + HO
i 

OH

It is not possible to distinguish between the three formulae by elemental ana
lysis when n> ca. 10.

The carbon and nitrogen analyses are often slightly lower, and the oxygen ana
lyses slightly higher, than those corresponding to the formula (CH3NO)n, indicat
ing that the degree of polymerization may be no greater than corresponding to 
n = 20-30. Since the polymer is insoluble and reacts chemically only under con
comitant depolymerization it has not been possible to determine its molecular 
weight.

III. Derivatives of Trimeric Formaldehyde Oxime
The assumption that the polymer should be trimeric has been based mainly on 
the isolation of a hydrochloride with the composition (CH3NO)3 • HC1 ( /) and on 
the observed molecular weight of the acetyl derivative (4), which may be pre
pared by the addition of acetic anhydride to the above mentioned ether extract 
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of formaldehyde oxime.7 These compounds cannot, however, be prepared directly 
from the solid polymer. Although the latter dissolves in dilute hydrochloric acid 
it is not re-precipitated when the solution is neutralized, indicating that the reac
tion with hydrochloric acid is accompanied by depolymerization. When the 
polymer is dissolved in methanol containing HC1, the hydrochloride (7) (identity 
proved by its infrared spectrum) can be precipitated by the addition of ether. Acid 
anhydrides and acid chlorides react only slowly with the solid polymer forming 
triacyl derivatives of the trimer. No partially acylated derivatives of the solid 
polymer could be prepared.

A hydrochloride with the formula (CH2NOH • HCl)n has been isolated as the 
initial product from the reaction of hydrogen chloride with an ether solution of 
formaldehyde oxime.10 However, it can only be obtained with this high HC1 
content when it is dried in a stream of gaseous HC1. Otherwise it rapidly loses 
HC1 and is transformed into 7. These crude samples of 7 usually contain more 
than 1, and less than 3, mol HC1 (quite often we have obtained a product ana
lysing as a dihydrochloride), but when the crude hydrochloride is dissolved in 
methanol and precipitated with ether the hydrochloride with the composition 
(CH3NO)3-HC1 * is always obtained as a well-defined and quite stable product.

* This is also the composition of commercial products sold under the name “formaldoxime hydro
chloride”.

The infrared spectra of the hydrochlorides with higher HC1 content do not 
differ very much from that of 7. However, this is not significant because the pro
ducts lose HC1 so easily. Sluiter10 determined the base constants of the bases 
present in H2NOHHC1 and 7 by measurements of the catalytic effect of the 
hydrochlorides on ester hydrolysis and sugar inversion and obtained the values 
2.4 x 10-12 and 3.0 x 10-13, respectively. Although these values may not be very 
exact by modern standards, the qualitative result seems quite unambiguous: 
when present in an equivalent amount, CH2NOH HC1 exerts a smaller catalytic 
effect than 7, although it contains three times as much HC1 per nitrogen atom 
and accordingly must be the hydrochloride of a stronger base. This latter species 
must either be trimeric, and therefore an isomer of the base contained in 7, or it 
must be monomeric formaldehyde oxime. Sluiter favoured the first possibility and 
advanced the hypothesis that the loss of HC1 was the result of a rearrangement of 
1,3,5-trihydroxyhexahydro-l ,3,5-triazine into the 2,4,6-trihydroxy isomer. This 
conclusion is now quite untenable and so we must conclude that the primary 
product is the hydrochloride of monomeric formaldehyde oxime. This is consistent 
with our NMR measurements on ether solutions, which reveal only signals attribut
able to formaldehyde oxime monomer.
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The fact that a pure product with a lower HC1 content than 1 is never obtained 
shows that we are not dealing with hydrochlorides of the chain polymer. How
ever, over a period of time the composition of the product (7) sometimes changes, 
either because of the formation of the solid polymer (decreasing HC1 content) or 
because of hydrolysis with the formation of hydroxylammonium chloride (in
creasing HC1 content). A hydrobromide,7 hydroiodide,7 hydrogen nitrate,11 and 
methiodide12 with corresponding compositions are also known.

The infrared spectrum of the hydrochloride (7) is rather complex and quite 
different from that of the polymers. A comparison with the infrared spectrum of 
the free trimer leaves no doubt that it is a hydrochloride of the latter.

Both the acetyl derivative (4) and the hydrochloride (7) give an instantaneous 
colour reaction with nickel chloride on addition of base. Since it had been shown 
that the ligand present in the resulting complexes is the anion of monomeric 
formaldehyde oxime1 we gave serious consideration to the possibility that the 
hydrochloride and the acetyl derivative might be derived from monomeric for
maldehyde oxime. This appeared to be supported by the fact that the infrared 
bands corresponding to CH2 deformation in the acetyl and benzoyl derivatives 
occur at the unusually frequency of 1415 cm-1, almost as low as for monomeric 
formaldehyde oxime (1410 cm-1) and much lower than for the polymers (1460 
cm-1). However, a similar lowering of the CH2 deformation frequency has been 
observed for certain heterocyclic systems14 and furthermore the infrared spectra 
of the acetyl and benzoyl derivatives in chloroform solution provide no indication 
of the presence of a double bond, even at high concentrations. That these com
pounds are in fact trimeric was confirmed by MS and by determination of their 
molecular weight in solution by various methods (cryoscopic, ebulliometric, 
thermoelectric).

The electric dipole moment of the acetyl derivative was found to be 3.25 debye 
in dioxane. This rules out the possibility that this compound might be (associated) 
formaldehyde jV-acetyloxime.

Finally, the 'H NMR spectra of the acetyl and benzoyl derivatives indicate the 
expected ratios of 3:2 and 5:2, respectively, for the two types hydrogen atoms in 
each compound. This rules out the possibility of these compounds being deriva
tives of a trimer analogous to glyceraldehyde or dihydroxyacetone. Accordingly it 
seems almost certain that these compounds are derivatives of 1,3,5-trihydroxy- 
hexahydro-1,3,5-triazine. To substantiate this conclusion an X-ray diffraction 
study of the acetyl derivative has been carried out.13 This shows that the acetyl 
derivative contains a six-membered hexahydrotriazine ring in the chair con
formation with three axial TV-acetoxy groups.

It was found that the acetyl derivative is rapidly hydrolysed by NaOH ; thus to 
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explain the formation of metal complexes with monomeric formaldehyde oxime 
from 1 or 4, one has only to assume that the hexahydrotriazine ring is rapidly 
depolymerized in solution.

Several years ago we demonstrated (unpublished) the presence of monomeric 
formaldehyde oxime in aqueous solutions of 1 by IR spectroscopy (sharp band at 
1620 cm*1 for a solution of 1 in D2O). NMR studies have now provided evidence 
that in fact a reversible equilibrium is easily established between 1,3,5-trihydroxy- 
hexahydro-l,3,5-triazine and formaldehyde oxime. Surprisingly, however, these 
investigations also showed that although the complexes are derived from the 
monomer, they are not formed directly from this but the trimer.

IV. NMR Spectra
The NMR spectrum of a solution of (H2CNOD)3 DC1 in D2O (pH — 1.1) 
shows two doublets at d 7.11 and 6.11, and two singlets at <5 4.82 and 4.65 (the <5 
values are pH-dependent, cf. Table 1). The first singlet is due to water. Assuming 
the presence of a cyclic hexahydro-1,3,5-triazine system, the other singlet at Ô 
4.65 can be ascribed to the methylene protons. The corresponding signal for 
1,3,5-trimethoxyhexahydro-1,3,5-triazine15 occurs at Ô 4.15 and that for the 
acetyl derivative (4) at Ô 4.53. For none of these hexahydrotriazines is splitting of 
the signal of the methylene protons observed ; this phenomenon is most likely a 
consequence of rapid interconversion between axial and equatorial protons at 
room temperature. Likewise the signal due to the methylene protons of other 
hexahydrotriazines, 10-18 with the exception of l,3,5-trinitrosohexahydro-l,3,5- 
triazine,16 appears only as a singlet.

The doubles at ô 7.11 and 6.61 are assigned to monomeric formaldehyde oxime. 
These doublets occur at ô 7.07 and 6.49 for a solution of pure, liquid formaldehyde 
oxime in CDC13, the singlet due to the trimer being totally absent. Solutions of 
formaldehyde oxime in CC14 or ether also contain only the monomeric form 
(Table 1). Similar ô-values for the doublets have been found in previous studies 
of the NMR spectra of solutions of monomeric formaldehyde oxime prepared 
by extraction of aqueous solutions with various solvents and without isolation of 
the pure compound.19-21 The existence of the trimer was not noted in these in
vestigations.

When distilled monomeric formaldehyde oxime is dissolved in D2O and 
immediately examined by ’H NMR, signals from both the monomeric and tri
meric forms are observed in the spectrum. The integrals of these signals correspond
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Table 1. Chemical shifts (d) for methylene protons for H2C=NOH and (CH2NOH)3.

monomer
solvent trimer ---------------------------------------------- —------

trans cis J (Hz)

CC14* 6.98 6.38 8.0
CDClg 7.07 6.49 8.5
(C2H5)2O 7.00 6.38 9.0
(CD3)2CO 4.00 6.94 6.34 9.0
(cd3)2so 3.84** 6.92 6.38 9.0
D2O pH 1.1 4.65 7.11 6.61 7.5

2.5 4.64 7.10 6.60 8.0
4.2 4.22 7.10 6.60 8.0
7.3 4.17 7.10 6.60 8.0

10.4 4.08 6.97 6.42 8.0
11.9 3.97 6.97 6.42 10.0

* The solution of H2C = NOH in CC14 is rapidly transformed into a gel of the polymer.
* * ô for OH proton 8.25.

Temperature 39 °C. Co = 0.347 mol 1 1

Table 2. Percentages of monomeric formaldehyde oximea, present in solutions of (CH2NOD)3DC1 
in D2O as a function of pH, temperature and initial concentration of (CH2NOD)3DC1 (Co).

pH: 1.3 1. 7 1.9 2.2 3.0 4.2
% monomer: 80 84 87 93 94 97

Co = 0.759 mol I-1. pH = 1.05

Temperature, °C: 25 30 35 40
% monomer : 44 56 62 65

Temperature 25 °C

Co: 0.334 0.436 0.573 0.759 2.5
pH: 1.26 1.18 1.12 1.05
% monomer: 68 63 56 44 ~0

a) Calculated from the 'H NMR spectra:
% monomer = 100(M)/[(M) + 1/3(T)], where (M) and (T) are the integrated intensities of the 
signals due to the monomer and the trimer.
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initially to 60-70 % of the monomer and 40-30 % of the trimer (c = ca. 1 mol/1). 
This must be considered a kinetically controlled ratio. At pH ca. 7 an equilibrium 
is slowly established but after several hours the mixture contains ca. 95 % of the 
monomer, in agreement with the results obtained starting with the hydrochloride 
of the trimer or the pure trimer (see later).

The AB system arises because of the difference in shielding of the methylene 
protons in cis (c) and trans (t) positions:

H(c) OH\ /

The equilibrium concentrations of the monomer and the trimer in aqueous 
solution can be calculated from the initial concentrations of the hydrochloride and 
the integrated intensities of the signals due to the methylene protons. As shown in 
Table 2 the ratio of monomer to trimer is dependent on the total concentration, 
the pH of the medium, and the temperature. The depolymerization of the trimer 
is favoured by diminishing concentration, increasing temperature, and increasing 
pH. At pH values higher than 3 only a few percent of the trimer is present in 
equilibrium with the monomer.

The existence of an “inactive” form of 1 has been postulated22-26 to explain the 
observation that a dilute solution of 1 does not give the usual colour reaction with 
metal ions (Ni2+, Mn2+, Fe2+). As can be seen from Table 2, the degree of depoly
merization of 1 increases with decreasing concentration and in very dilute solutions 
only monomeric formaldehyde oxime is present. Thus it must be concluded that 
the “inactive form” is monomeric formaldehyde oxime and that the coloured 
complexes are formed only at concentrations where a significant proportion of the 
trimer is present.

Our measurements indicate that at low pH values an equilibrium between 
monomeric and trimeric formaldehyde oxime is established immediately. ’H 
NMR provides no indication of the formation of a hydrate of the oxime, HOCH2- 
NHOH, and the trimerization of 3 therefore undoubtedly proceeds via the pro
tonated oxime (Scheme 1).

In accordance with Scheme 1 the quantity [trimer] x [monomer]-3 is found to 
be approximately constant for a variety of initial concentrations and constant pH. 
At constant initial concentration, and for pH values varying between 1 and 2, the 
quantity [trimer] x [monomer]-3 x [H+]-1 is approximately constant. At pH 
values higher than 4 the depolymerization reaction is slow (cf. Table 3). A limiting
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Scheme 1

3H2C=NOH + H+

HO^H
HîC^CHî 

HO-fL^-OH

..OH . .OH \
H,C=NOH + H ===== H2C=N ► H2C—N

, H /

value of the ratio trimer/monomer is reached only after several hours and is 
largely independent of pH. It is quite possible that the depolymerization process 
is in fact irreversible under these conditions. Although a small amount of the trimer 
is also formed from the monomer in alkaline solution this might occur via a reaction 
analogous to the polymerization of liquid or gaseous formaldehyde oxime, a pro
cess which is apparently an oxygen-catalyzed radical reaction.

The chemical shifts and the coupling constants for the XH NMR resonances of 
formaldehyde oxime in alkaline solution are close to the values observed for solu
tions in non-aqueous solvents. This indicates that 3 is not transformed into its 
anion to any appreciable extent even at pH 12 (pka values near 13 have been given 
for various oximes27). Below pH 2 the peaks broaden. This is indicative of the 
protonation of a base whose strength is of the order of magnitude 10-13, as found 
by Sluiter.10 The protonation of formaldehyde oxime in strongly acid solution is 
also evident from polarographic measurements on 7.22 Likewise the d-value for 
the trimer at pH 1 applies to the cation. That the hexahydrotriazinium ion gives 
rise to only one singlet is explicable on the basis of rapid exchange of the proton 
between the three nitrogen atoms.

The 'H NMR spectrum of the methiodide (6) in D2O provides no indication of 
the presence of a six-membered ring. In addition to the methylene signals of 
formaldehyde oxime, the spectrum shows signals due to formaldehyde and the 
N-methylhydroxylammonium ion, together with a signal at à 3.52 which is

Table 3. Percentages of monomeric formaldehyde oxime present in solutions of the trimer, 1,3,5- 
trihydroxyhexahydro-l,3,5-triazine, in D2O (35 °C; c = 0.75 mol I-1).

PH
l ime after dissolution

15 min 1 h 4 h 24 h

4.2
7-9

11

90 91 94 94
12 35 62 83
33 61 96
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2H2C=NOH + ch2o + ch3nh2oh

2H2C=NOH + H2C=N0CH3 + H+

assigned to the methyl group of O-methylformaldehyde oxime15 (the possibility 
that it might originate from the methylene protons of a compound 
CH3N(OH)CH2OH is probably ruled out; see Experimental). The formation of 
A-methylhydroxylamine by hydrolysis proves that compound 6 is JV-methylated. 
The simultaneous formation of an O-methyl compound must then be due to a 
nitrogen —* oxygen transfer of the methyl group during the decomposition 
(Scheme 2).

From the integrated intensities of the A- and O-methyl signals it can be seen 
that the two compounds are formed in approximately equal amounts. There is 
overlap between the methylene signals of formaldehyde oxime and its O-methyl 
derivative but the presence of the latter is confirmed by the integrated intensity 
of the methylene signals being higher than calculated for 2 mol of formaldehyde 
oxime.

The ‘H NMR spectrum of the methiodide (6) in DMSO-d6 indicates that the 
compound decomposes immediately in this medium with the formation of for
maldehyde oxime and its O-methyl derivative15 but without the formation of 
A-methylhydroxylamine. The hydrochloride (7) is also immediately and com
pletely transformed into the oxime on dissolution in DMSO-d6.

At higher concentrations of (H2CNOD)3 DC1 in D2O, and at higher tempera
tures, abnormal results are sometimes obtained : For example, in some experiments 
the concentration of the monomer was found to decrease with increasing tem
perature. This indicates that in addition to trimerization a chain polymerization 
may set in, as is also evident from the precipitation of the solid polymer in more 
concentrated solutions. As a result of this complication, and because the instrument 
used in this investigation does not give data of sufficient precision for the calcula
tion of thermodynamic constants, we did not carry out a great number of measure
ments. However, we feel that we have demonstrated that formaldehyde oxime 
may polymerize to a cyclic trimer and that the trimer is nearly completely de
polymerized on neutralisation.

NMR spectroscopy also sheds light on the following rather puzzling observations 
made during various preparations of formaldehyde oxime:

a) When formaldehyde is added to an aqueous solution of hydroxylammonium 
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chloride and the solution is neutralized, extraction with a few portions of ether 
usually gives lower yields of formaldehyde oxime than when the hydroxylam
monium chloride solution solution is made alkaline before the addition of for
maldehyde. However, continuous extraction with ether furnished a good yield of 
the oxime.

b) When the solution of hydroxylammonium chloride and formaldehyde is 
made alkaline (pH 10-11) before extraction with ether, the yields of the oxime 
diminish markedly. When the ether extracts no longer give a positive reaction 
with nickel(II) the aqueous phase still gives a positive reaction.

These observations are explicable on the basis of the following results obtained 
by 'H NMR spectroscopy of solutions with concentrations similar to those 
employed in preparative procedures (2.5 M) :

Formaldehyde and hydroxylammonium chloride react in aqueous solution 
rapidly and quantitatively with the formation of 7, and at sufficiently high con
centrations no monomeric oxime is formed. A solution obtained by adding for
maldehyde to a neutralized solution of hydroxylammonium chloride shows signals 
for both the oxime and the trimer, but the latter signal disappears slowly. Immediate 
extraction with ether may therefore give a low yield of the oxime whereas con
tinuous extraction extended over several hours gives a good yield.

If the hydroxylammonium chloride solution is made alkaline before the 
addition of formaldehyde the resulting solution displays only the signals of the 
oxime; this procedure might therefore seem to be the more convenient for the 
preparation of the oxime (and was used in the original paper by Dunstan and 
Bossi7). However, at high concentrations the oxime may polymerize to the in
soluble polymer which separates as a gel-like precipitate before the oxime has 
been extracted.

The ’H NMR spectrum of a solution of 1 which is suddenly made alkaline re
veals the presence of a considerable amount of the trimer. This is simply because 
the equilibrium corresponding to pH ca. 1 is “frozen”, the depolymerization of 
the trimer occurring only slowly in alkaline solution. Because of its great hydro
philicity the trimer cannot be extracted with ether. When the pH of the solution 
is adjusted to 3-4 the trimer depolymerizes and the monomer can then be obtained 
by extraction of the neutralized solution.

The1H NMR spectra show no new signals when an excess of hydroxylammonium 
chloride or formaldehyde is employed (with or without addition of NaOH), i.e. 
there is no indication of the formation of the species CH2(NHOH)2 or 
HON(CH2OH)2.
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V. Isolation of free 1,3,5-Trihydroxyhexahydro-1,3,5-Triazine
The above mentioned measurements indicate that the free base is present in an 
alkaline solution of 7, but attempts to extract it with ethyl acetate or pentyl 
alcohol (after extraction of the monomer with ether) were unsuccessful because 
it polymerized during evaporation of the solvents. The authentic trimer was 
successfully isolated as a dioxane adduct in the following manner: Formaldehyde 
oxime remaining after evaporation of an ether solution immediately polymerizes 
exothermically when the temperature is around 0 °C. If the product is extracted 
with dioxane before it has completely solidified some of it goes into solution, and 
on removal of the solvent in vacuum a white solid is obtained whose composition 
corresponds approximately to (CH2NOH)3 • 1/2C4H8O2. This substance is soluble 
in water and gives a positive nickel reaction. An aqueous solution shows initially 
only the 'H NMR signals of the trimer and of dioxane, but weak signals for the 
monomer soon appear. After some hours the signals of the monomer become very 
strong while that of the trimer diminishes. At room temperature the solid sub
stance rapidly loses dioxane and is transformed into the insoluble polymer.

We finally succeeded in preparing a solvent-free product in the manner de
scribed in the Experimental. After recrystallization from ethyl acetate, analyses 
and MS proved it to have the formula C3H9N3O3 and ’H NMR showed it to be 
the desired free base, 7. It is a colourless substance which is readily soluble in 
water and alcohols but is insoluble in ether, chloroform, benzene, etc. At room 
temperature it is rapidly transformed into the insoluble polymer. A prerequisite 
for this transformation is ring-opening, which is catalyzed by acids and bases (see 
below) and probably also by oxygen and certain metal ions. When the compound 
has been purified meticulously it can be kept unchanged for months in a refriger
ator at —20 °C. The presence of small amounts of the polymer in the trimer is 
revealed by its IR spectrum and gives rise to turbidity of aqueous solutions.

At pH ca. 7 the trimer is only slowly transformed into formaldehyde oxime 
(Table 3 and Fig. 1) but at pH values lower than 4 equilibrium is established 
almost instantaneously (Scheme 2 and Fig. 1). The transformation is also (ir
reversibly) base-promoted but is only reasonably rapid at pH values higher than 
10. Depolymerization in this case probably proceeds via the anion (Scheme 3).

Scheme 3 0”
H2CxN'ÇH2 h2o r

HO~N. XN-OH
C 
H2

3H2C = NOH ♦ HO“
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Fig- F
‘H N MR spectra of 
solutions of 1,3,5-tri- 
hydroxyhexahydro-
1,3,5-triazine in D2O 
with or without addi
tion of DC1.
a) pH 2.5;
b) 4.2;
c) pH 7, recorded 10 
min after dissolution;
d) pH 7 after 24 h.

Jl
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Potentiometrie titrations indicate 7 to be a very weak acid with a pKa value 
near 11. Since it is a trivalent acid and is transformed into formaldehyde oxime, 
which is also an acid, it would be very difficult to determine a more precise value.

In alcohols the transformation of 7 into the monomer 3 is much slower than in 
water. In methanol only traces of 3 are formed after 24 h. Compound 7 is also 
soluble in DMSO and (in contrast to the hydrochloride or methiodide) is not 
detectably transformed into the monomer in this solvent.

On addition of peroxodisulfate to an alkaline solution of 7 a red colour develops. 
It was shown by ESR spectroscopy that this colour reaction is due to the formation 
of free radicals. These are probably derived from the anion of the trimer but 
their exact nature has not been established. The free radical derived from the 
monomer28 is not formed under these conditions. A pink colour also develops 
when a concentrated solution of 1 is neutralized, probably due to oxidation of 7 
by atmospheric oxygen.

Compound 7 is easily acylated by acetic anhydride or benzoyl chloride to give 
derivatives 4 and 5 which are identical with those prepared from the monomer. 
On heating, the benzoyl derivative forms benzoic acid and HCN. 1,3,5-Triazine 
could neither be detected in this reaction nor when 7 was heated with dehydrating 
agents (cf. the formation of 1,3,5-triazine from formamide29). In the latter case 7 
was transformed into the polymer.

VI. Experimental
The 60 MHz NMR spectra were measured using a Varian A-60 A instrument. 
Sodium 3-(trimethylsilyl)propanesulfonate (DSS) was used as internal standard 
for D2O solutions, and TMS for the measurements in CDC13 and CC14. The 
temperature at which the spectra were recorded was determined from the pos
ition of the signals of ethylene glycol. Infrared spectra were recorded on a Perkin 
Elmer Model 337 grating spectrophotometer. Mass spectra were obtained with 
an AEI-902 mass spectrometer at 70 eV using the direct sample-insertion system.

For the determination of the dipole moment of the acetyl derivative 4 a Dipol- 
meter DM 01 instrument from Wissenschaftlich-Technische Werkstätten, Weil
heim, was used.

For pH measurements, a pH meter 22 from Radiometer, Copenhagen, was 
used. Melting points (corrected) were determined with a Kofler hot-stage micro
scope.

Oxygen analyses were carried out by the Unterzaucher method. We thank Mr. 
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R. Amsler of the NOVO Microanalytical Laboratory for performing these ana
lyses.

Elemental analyses agree within ± 0-4 units with the calculated values, un
less the values found have been given.

1,3,5-Trihydroxyhexahydro- 1,3,5-triazinium vhloride, “triformoxime hydrochloride"’ (1). 
a) Hydroxylammonium chloride (40 g) was added with stirring to aqueous for
maldehyde (40 % ; 44 ml) ; it rapidly dissolved and the temperature rose to ca. 
35 °C. The solution was then evaporated almost to dryness in vacuo. Benzene 
(200 ml) was added and most of it removed by distillation in vacuo. This treatment 
was repeated and ethanol (150 ml) was added to the residue. The mixture was 
cooled overnight in a refrigerator and the crystalline precipitate was collected, 
washed with a little cold ethanol and dried in vacuo over KOH. Yield: 29,5 g 
(90 %) of coulourless crystals with m.p. 132-133 °C (closed tube; decomp.). This 
procedure furnishes a pure product directly.

The solution of 1 can also be prepared by stirring a suspension of paraformalde
hyde in an aqueous solution of hydroxylammonium chloride at 60 °C until dis
solution is complete. This method was used for the preparation of (D2CNOH)3- 
HC1 from paraformaldehyde-d2.

b) Compound 1 has also been prepared several times by the original procedure7, 
i.e. by bubbling dry HC1 through a cooled ether solution of formaldehyde oxime 
prepared as for compound 3. In this case the crude product contains excess of 
HC1 and must be recrystallized, preferably by dissolving it in warm ethanol, 
adding ether until precipitation begins and then cooling at < 0 °C. Recrystalliza
tion results in considerable loss of material (30-40 %), and it was shown that this 
is due to extensive solvolysis to formaldehyde and hydroxylamine taking place in 
the hot alcoholic solution. Anal. C3H10ClN3O3: C, H, N, Cl.

The chloride 1 is very soluble in ethylene glycol, cellosolve, DMF and similar 
solvents but only slightly soluble in cold methanol or ethanol and insoluble in most 
other organic solvents.

Main IR bands (KBr) : 3220 vs, 3040 m, 2840 s, 2620 s, 2520 m, 1538 m, 1436 m, 
1405 s, 1345 m, 1300 vw, 1252 w, 1202 s, 1178 s, 1130 m, 1040 m, 970 m, 948 s, 
798 s, 710 w, 620 m, br, 560 s, 548 s, 500 w, 433 s.

Poly (formaldehyde oxime) (2). The various forms of 2 were prepared wither from 
aqueous solution {2a) according to Scholl6 or by spontaneous polymerization of 
gaseous or liquid formaldehyde oxime {2b-e). Some 20 different samples have 
yielded practically identical infrared spectra. Their analytical composition is 
somewhat variable (C 24.6-27.3 ; H 6.51-6.88 ; N 28.4-31.7 ; O 34.8-38.6) but shows 
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no apparent correlation with the method of preparation. (Representative ana
lyses: Found (C, H, N, O) : 2a 25.7; 6.88; 31.7; 34.8. 2W26.3; 6.70; 30.5; 35.7. 
2e 25.8; 6.51 ; 30.0; 37.5. Calc, for (CH3NO)n : C 26.65; H 6.66; N 31.1 ; O 35.5.) 

The polymer may be prepared in good yield by heating a mixture of 1 and CaO 
in a sublimation apparatus. In this process the trimer is depolymerized and the 
monomer condenses on the cool surface where it rapidly becomes transformed into 
the polymer. This method was also used to prepare (D2CNOH)n for the infrared 
spectroscopic investigation.8

The products 2b-e may give a positive nickel reaction due to traces of the trimer. 
The latter may be removed simply by washing with hot water or ethanol.

The mass spectra of the polymers were identical to that of the monomer. There 
was no indication of the formation of ions heavier than those formed from the 
monomer.

The white, amorphous (according to X-ray powder diagrams) solids are in
soluble in all solvents except those in which depolymerization can take place. 
Krässig and Ringsdorf30 found the molecular weight of 2 to be ca. 150 in capro
lactam, but this result is due to depolymerization to the trimer 7. When 2 was dis
solved in molten caprolactam the presence of 7 could be proved by the colour 
reaction with nickel(II) chloride.

The polymers are easily dissolved in strong acids. Solutions in 1 M DC1/D2O 
show only the NMR signal of the hexahydrotriazinium ion. The polymers are 
also soluble in warm NaOH. Solutions in 1 M NaOD/D2O show only the signals 
of formaldehyde oxime. These solutions give a negative reaction with nickel(II) 
chloride, showing that the coloured complexes are not formed directly from the 
monomer. When the alkaline solutions are acidified and again made alkaline 
there is a strong, positive nickel(II) reaction.

On boiling a suspension of 2 in benzene with acetic anhydride or benzoyl 
chloride the derivatives of the trimer (4 and 5) are formed.

Formaldehyde oxime (3). A solution of 1, prepared according to Ja, was diluted with 
100 ml of water, cooled in ice and adjusted to pH 8 with 10 M NaOH. When the 
solution became neutral a faint red colour developed. The solution was extracted 
continuously with 300 ml of ether for 24 h. After that time the pH of the solution 
was 9 and the aqueous phase gave a negative nickel(II) reaction while the ether 
phase gave a strongly positive reaction. After drying the ether phase (MgSO4) the 
bulk of the solvent was removed in vacuo. The remaining liquid was distilled at 
normal pressure, the receiver being cooled in dry-ice/acetone. Gas chromato
graphy and ‘H NMR indicated that the liquid still contained some ether. It was 
therefore redistilled, removing practically all the remaining ether; b.p. 82-83 °C 
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(759 mmHg), m.p. —5°C. At room temperature the oxime polymerizes com
pletely in a few minutes. It can be kept at — 80° C for some time but not without 
the formation of some of the polymer.

NMR spectrum, see Table 1.
MS [m/e (% rel.int.)]: 46 (2), 45 (100, [M]), 44 (9), 43 (6), 32 (2), 30 (5), 

29 (2), 28 (32, [M-OH]), 27 (25, [M-H2O]), 26 (2).

7,3,5-Triacetoxyhexahydro- 1,3,5-triazine (4). Acetic anhydride (4 ml) was added 
to the carefully dried ether solution (40 ml) of formaldehyde oxime prepared as 
above and the solution was kept for several days in a refrigerator until colourless 
crystals of the acetyl derivative had formed. Yields are very variable. M.p. 132-133 
°C (TLC-pure; lit.7 133). Anal. C8H15N3O6: C, H, N. The compound is readily 
soluble in water, ethanol and chloroform, slightly soluble in CC14, and insoluble 
in ether. It can be recrystallized from ethyl acetate. It is easily hydrolysed in 
alkaline solution (when 0,1 M NaOH was added to an aqueous solution at such 
a rate as to maintain a pH value of 10.5 hydrolysis was complete in ca. 2 h).

This compound could be prepared in higher yield from the trimer (7) : 400 mg 
of 7 was dissolved in 1 ml of acetic anhydride and the solution was kept for one 
day at room temperature. Excess acetic anhydride was removed in vacuo. The 
residue was dissolved in chloroform and the solution was washed with water, dried 
with MgSO4 and concentrated in vacuo. On addition of ether 450 mg of 4 were 
obtained.

The same compound has also been obtained from the polymer (see under 2) or 
by passing ketene through a solution of formaldehyde oxime in ether. In the latter 
case the resulting solution was distilled in vacuo and the fraction passing over at 
34-60 °C (12 mmHg) was recrystallized from abs. ethanol.

Dipole moment (dioxane, 20 °C) : 3.25 D.
Mol.wt. (thermoelectric meth., CHC13) : 260 ± 2, calc. 261.1H NMR (CDC13) : 

Ô 4.53 (s, 2H), 2.08 (s, 3H).
IR (KBr) : 3020 w, 2940 w, 1750 vs, 1415 m, 1363 s, 1240 vs, 1200 vs, 1142 s, 

1040 m, 1002 m, 972 m, 943 m, 895 s, 880 s, 802 s, 648 m. Most of these bands can 
be assigned to the groups CH2, CH3, and O—COCH3. The strong doublet at 
880 4- 895 cm-1 (in CHC13 a singlet at 887 cm-1) is assigned to v(N-O) and the 
1040 cm-1 band to v(C-N).

MS [m/e (% rel.int.)]: 261 (1, [M]), 201 (1, [M-CH3CO2H]), 174 (9, [M- 
CH2NOCOCH3]), 132 (6, [174 - CH2CO]), 88 (25, [CH2NHOCOCH.t]), 
60 (21, [CH3CO2H+]), 45 (27), 44 (14), 43 (100, [CH3CO+]), 42 (29), 32 (14), 
27 (12).
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1,3,5-Tribenzoyloxyhexahydro- 1,3,5-tnazine (5). An aqueous solution of hydro
xylammonium chloride (20 g) and formaldehyde (40 %, 22 g) was neutralized 
and shaken with benzoyl chloride (40 g), keeping the solution neutral by addition 
of sodium carbonate. The white precipitate (30 g) which separated was collected 
and extracted with boiling ethanol-water (1:1) acidified with HC1, and the in
soluble material was recrystallized from chloroform-ethanol. Yield 14 g (33 %) 
with m.p. 176-177 °C (TLC-pure; lit.7 159). Anal. C24H21N3O6: C, H, N. 
Mol.wt. 447 (MS). ’H NMR (CDC13) : Ô 5.00 (s, 2H) ; 7.0-8.0 (m, 5H). The IR 
spectrum is dominated by the strong bands due to the benzoyl groups. The 
following bands can with reasonable certainty be assigned to the triazine system : 
1415 (<5 CH2), 950, 830, and 780 cm“1.

The acidic ethanolic solution remaining after treatment of the crude product 
yielded on addition of water a solid which on recrystallization from ethanol-water 
gave 8 g of 0,A-dibenzoylhydroxylamine (dibenzohydroxamic acid); m.p. 166- 
167°C (lit.31 165).

Compound 5 has also been prepared from the polymer (2; q.v.), and from the 
trimer (7) : compound 7 (270 mg) was dissolved in pyridine (5 ml) and benzoyl 
chloride (840 mg) was added dropwise to the solution while cooling in ice. The 
final solution was diluted with water and extracted with chloroform. Work-up 
of the solution yielded 300 mg of 5.

Compound 5 decomposes on melting with the formation of HCN together with 
a white sublimate, identified as benzoic acid, and a dark brown residue (polymer 
of HCN). 1,3,5-Triazine could not be detected.

JV - Methyl-1,3,5-trihydroxyhexahydro-1,3,5-triazinium iodide (6).
An excess of methyl iodide (10 g) was added to an extract (cf. 5) containing ca. 

2 g of formaldehyde oxime in 50 ml of ether.12 Slightly yellow crystals (4.9 g) 
separated from the solution when this was kept for some days in a refrigerator at 
0-5 °C. They could not be recrystallized but were washed with ether. The com
pound melted with decomposition near 100 °C. Anal. C4H12IN3O3: C, H, N. It is 
readily soluble in water, methanol or dimethyl sulfoxide but is simultaneously 
decomposed with the formation of formaldehyde oxime. In aqeous solution the 
other products formed are formaldehyde, JV-methylhydroxylammonium ion and 
formaldehyde O-methyloxime.

*H NMR (D2O) : Ô 6,57 (d), 7.06 (d), 4.79 (s, CH2O), 3.00 (s, CH3NH2OH+), 
3.52 (s, -OCH3).

The compound CH3N(OH)-CH2-N(OH)CH3, prepared according to Ulrich 
and Sayigh32, shows two peaks in CDC13 at ô 3.43 (2H) and 2.60 (6H) ; in D2O 
it shows 4 peaks at ô 3.72, 3.52, 2.68 and 2.64, probably because of partial hydro
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lysis to CH3N(OH)CH2OH. On acidification of the D2O solution there are only 
two signals at ô 3.00 and 3.51. However, the latter is a broad peak which is quite 
different from the 3.52 peak seen for the solution of the methiodide.

The IR spectrum of the methiodide is similar to that of the hydrochloride ( 7).

1,3,5-Trihydroxyhexahydro- 1,3,5-triazine (7). The hydrochloride 1 (17 g) was sus
pended in water (15 ml). The suspension was cooled in ice, and a solution of KOH 
(5.6 g) in water (10 ml) was added gradually until pH was ca. 7. Ethanol (250 ml) 
was added and the precipitated KC1 was collected and discarded. The solution 
was concentrated in vacuo and the remaining water was removed by repeated eva
poration with addition of ethanol and benzene. Finally, the solution was evapor
ated to dryness and the residue was extracted with 400 ml of boiling ethyl acetate. 
Only part of the material dissolved but on cooling the solution and decanting it 
from the crystalline residue renewed treatment of the latter with a further portion 
of the solvent caused most of it to dissolve. Ether (400 ml) was added to the com
bined ethyl acetate solution and the crystals were collected after cooling overnight. 
5 ield 5.7-6.9 g (42-51 %). For analytical purposes 1 g of product was recrystallized 
lrom 60 ml of ethyl acetate (yield 0.5 g). Traces of ethyl acetate were removed by 
drying under high vacuum until the IR spectrum showed no absorption in the 
1700 cm-1 range.

Anal. C3H9N3O3: C, H, N. Slow evaporation of the ethyl acetate solution 
yields compound 7 as large, colourless crystals.

Compound 7sublimes perceptibly even at 50 °C, the vapoxr being the monomer. 
It melts essentially unchanged (IR spectrum) at 114-115 °C but the melt is fairly 
rapidly transformed {via the monomer) into the polymer. On heating 7 with de
hydrating agents such as CaO or CaC2 it is similarly transformed into the polymer 
(no 1,3,5-triazine could be detected). 'H NMR spectra, see Tables 1 and 3 and 
Figure 1. Main IR bands (KBr) : 3420 vs, 3200 sh, 3110 vs, 2950 w, 2880 vs, 
1490 sh, 1470 s, 1430 m, 1380 s, 1365 sh, 1305 w, 1292 m, 1245 w, 1168 s, 1005 m, 
970 sh, 955 s, 918 s, 815 m, 795 s, 730 s, 710 sh, 585 m, 572 s, 560 sh, 505 m, 440 
sh, 430 m.

Compound 7 forms a dioxane adduct (m.p. ca. 90 °C) which according to 
elemental analyses has the composition C3H9N3O3 • ’^CH^X. Its ’H NMR 
spectrum in D2O shows the proton signals of 7 and of dioxane (d 3.72) in the 
expected ratio (3:2). Its infrared spectrum exhibits only the absorption bands of 
7 and dioxane. At room temperature it loses dioxane and is transformed into the 
polymer.
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I. Introduction
In the preceding paper1 evidence was presented supporting the view that the so- 
called “triformoxime” is not a trimer of formaldehyde oxime but a chain polymer. 
The present investigation was undertaken to substantiate this conclusion.

The infrared spectra of poly (formaldehyde oxime), (CH2NOH)n, as well as 
of its deuterated species, poly(formaldehyde-d2 oxime), CD2NOH)n, poly (for
maldehyde oxime-d), (CH2NOD)n, and poly(formaldehyde-d2 oxime-d), 
(CD2NOD)n, have been measured. Both (CH2NOH)n and (CD2NOH)n were 
prepared in two different ways, viz by a polymerisation and by a polycondensation 
(see II. 1). The products from the two types ofreaction are referred to as A and B, 
respectively, in the present paper. The other two species, (CH2NOD)n and 
(CD2NOD)n, were, however, prepared only by polycondensation.

The two compounds A and B have been shown not to be crystalline by the X-ray 
powder diffraction. The assignments of the infrared spectra have therefore been 
based on the assumption that poly(formaldehyde oxime) is an amorphous chain 
polymer, the backbone of which is a planar zig-zag chain, of repeating -CH2NOH- 
units as indicated in Fig. 1.

Repeat unit

z

O OXYGEN
O NITROGEN 
o CARBON 
o HYDROGEN

Fig. 1. Poly (formaldehyde oxime) 
chain. The carbon and nitrogen 
atoms lie in the xz-plane (cp. Fig. 2), 
the CH, NO, and OH bonds in the 
xy-plane.
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II. Experimental

1. Preparations
As discussed in the preceding paper1 a polymer of formaldehyde oxime can be 
obtained either by spontaneous polymerisation of the (gaseous or liquid) monomer 
(products A) or by polycondensation of formaldehyde with hydroxylamine in 
aqueous solution (products B).

It was not possible to achieve a satisfactory degree of exchange of OD groups 
for OH groups simply by treatment of the polymeric products with D2O, possibly 
because of the existence of strong hydrogen bonds in these compounds. The 
deuterated species were therefore prepared by condensation of CH2O or CD2O 
with deuterated hydroxylamine in D2O. Even then complete deuteration could 
not be achieved (cf. IV. 1).

The CD2-compounds were prepared from paraformaldehyde-d2, which was 
either depolymerised to CD2O or transformed into (CD2NOH)3HC1, the latter 
two of which furnished the polycondensate (B) or the polymer (A), respectively 
(see Ref. 1, p. 17).

2. Spectroscopic Procedure
The infrared spectra of the compounds in KC1, KBr, CsC 1 and CsBr discs ( 1 -3 mg 
sample in 300 mg matrix) were measured in the region 4000-300 cm-1 using a 
Perkin-Elmer Model 225 spectrometer. The resolution was 1-2.5 cm-1 throughout 
the entire frequency region. The absolute accuracy of wavenumber readings on 
the spectrometer itself is better than ±0.02 % and on the recorded spectra it is 

about ± 0.5-1 cm-1. However, the accuracy of the frequencies given is believed 
to be no better than ± 1-2 cm“1 for narrow bands and ± 3-5 cm-1 for broad 
bands and shoulders. This is mainly due to the fact that the positions of most of the 
bands are somewhat dependent on the matrix material used. This is especially 
true for the (CH2NOH)n bands at 430 cm“1 and 3300 cm-1 for which variations 
in band frequency of about 5 and 10 cm“1, respectively, have been observed. 
The accuracy of ± 0.5-1 cm“1 in measurement of the band frequencies was ob
tained by expanding the spectra adequately. The following abscissa expansions 
were used :

spectral region cm-1 per cm on the chart paper
3500-2000 cm“1
2500-1000 cm“1 
1000- 400 cm“1
460- 300 cm“1

50 cnT’/cm and 10 cm“1/cm
25 cm“‘/cm and 5 cnT'/cm
10 cm“'/cm 
5 cm 1 /cm



40:2 5

III. Theory

Symmetry and Normal Vibrations
The general theory of the internal vibrations of chain molecules has been thorough
ly treated by several authors.2 However, for the convenience of the reader a brief 
survey of the general features of the theory will be given.

For a non-linear molecule containing N atoms the number of nonzero normal 
vibrational modes is 3JV-6. The infrared spectrum of a polymer might therefore 
be expected to be very complicated, showing a large number of absorption bands. 
However, it may be shown that for an infinite polymer chain which is regularly 
arranged in a series of repeating units of identical conformation only those 
vibrational modes can be infrared (or Raman) active for which all such units are 
vibrating in phase. These are the socalled factor group vibrations. If there are r 
atoms in the repeating units the number of modes of non-zero frequency will be 
3r-4, since there are 4 modes of zero frequency (three translations of the whole 
chain and one rotation around the chain axis).

For real polymer chains containing a finite number N of repeating units a 
splitting of each vibrational mode into N vibrations is to be expected due to the 
interaction between the N adjacent repeating units. However, it turns out that 
of the N vibration frequencies the factor group vibration frequency is by far the 
most intense. All the others are either of zero intensity or quite weak.

Fig. 2. Symmetry elements in an ex
tended, infinite poly(formaldehyde 
oxime) chain.

From considerations of the symmetry elements of the repeating unit the sym
metry species can be predicted. Fig. 2 shows the symmetry elements for the 
repeating unit of an infinite extended poly(formaldehyde oxime) chain. Here 
(jh is a mirror plane in the xy-plane. The symmetry elements of the infinite ex
tended poly(formaldehyde oxime) chain is the unit translation (which is equivalent 
to the identity E for the repeating unit) in addition to an infinite number of mirror 
planes a. These elements form a line group and the elements of the repeating unit 
together with the unit translation form a sub-group of the line group, a socalled 
factor group. This group is not, however, a point group, but it can be shown that 
there is a point group which is isomorphous with the factor group. For the poly- 
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(formaldehyde oxime) chain with the symmetry elements E and this point group 
is Cs. In Table 1 are given the symmetry species and the number of vibration 
modes including zero modes.

* Number of vibration modes for an isolated, extended, infinite polyformaldéhyde oxime) chain 
(including zero modes).

Table 1. Symmetry species for the point group Cs and for the isomorphous line group of the poly
formaldéhyde oxime) chain. Number of vibration modes.

Point group
C E

Line group E Zero modes
Number of 
vibration 
modes *

4’ + 1 + 1 E, t,rz 12
4” + 1 - 1 T 6

The characterization of chain molecules by line groups is, however, only correct 
if interaction between neighbouring chains can be neglected. Although there is a 
vibrational interaction between adjacent chains it is usually small compared with 
the interaction between adjacent repeating units within the same chain. For 
crystalline polymers this inter-chain interaction is regular and well-defined and is 
expected to cause a splitting of the absorption bands into a number of peaks, 
depending on the number of chains passing through a unit cell and on the selection 
rules. For amorphous polymers the interaction is of a random nature and for most 
compounds will give rise to a broadening of absorption bands. The line group 
analysis can therefore be considered to be a reasonable satisfactory approximation 
for amorphous polymers.

It follows from Table 1 that vibrations of species A' must be symmetrical with 
respect to both types of symmetry operation and that vibrations of species A” are 
antisymmetric with respect to the mirror plane. The normal vibrations of a single 
poly(formaldehyde oxime) chain are shown in Figures 3, 4 and 5. The symmetry 
coordinates have been chosen in such a way that each of them - besides having 
the correct symmetry - also represents a rough approximation to the real mode of 
vibration for the chain.
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O NITROGEN 
o CARBON 
o HYDROGEN

Fig. 3. Normal vibra
tions of the CH2 groups 
of poly (formaldehyde 
oxime). The CH2 
groups are shown slightly 
twisted with respect to 
the xy-plane.

VU(A-)

o OXYGEN 
O NITROGEN 
o CARBON
o HYDROGEN

Fig. 4. Normal vibra
tions of the OH groups 
of poly (formaldehyde 
oxime). The OH groups 
lie in the xy-plane but 
are shown slightly twisted.
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O OXYGEN
O NITROGEN 
o CARBON

Fig. 5. Normal vibra
tions of the carbon- 
nitrogen-oxygen ske
leton of polyformal
déhyde oxime).

Vg(A')

In the high frequency range (above 2000 cm-1) the true normal coordinates are 
in general well approximated by group symmetry coordinates, i.e. the CH2(CD2) 
and OH(OD) stretching vibrations may be considered to be “pure” vibrations. 
However, at lower frequencies coupling between vibrations may occur if the 
groups are vibrating with nearly the same frequency, if they are situated near to 
each other and if the vibrations have the same symmetry. In such cases the 
fundamental vibrations will be rather “impure” because the valence coordinates 
mix in forming the normal coordinates, i.e. the group symmetry coordinates will 
be poor approximations to the true normal coordinates.

IV. Discussion of the Spectra

1. Results
The infrared spectra of poly (formaldehyde oxime), (CH2NOH)n, and its deuter
ated species (CD2NOH)n, (CH2NOD)n and (CD2NOD)n were measured in the 
solid state as described above. The spectra are shown in Figures 6, 7,8,9, 10,11 and
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12. It can be seen that apart from being rather simple the spectra of (CH2NOH)n 
formed by polymerisation (A) and by polycondensation (B) look very much the 
same; this is also true for (CD2NOH)n. The indication is thus that the structures 
of A and B are very similar.

Fig. 6. Infrared absorption bands of (CH2NOH)n in the region 3600-2700 cm \ Left: compound 
A. Right: compound B.
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Fig. 7. Infrared spectrum of (CH2NOH)n in the region 1550-400 cm Upper spectrum: compound
A. Lower spectrum: compound B.
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Fig. 8. Infrared absorption bands of (CD2NOH)n in the region 4000-2000 cm *. Upper spectrum: 
compound A. Lower spectrum: compound B.
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WAVENUMBER CM-’

Fig. 9. Infrared spectrum of (CD2NOH)n in the region 1550-300 cm Upper spectrum: compound
A. Lower spectrum : compound B.
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Fig. 10. Infrared spectrum of (CH2NOD)n in the region 4000-350 cm *.

WAVENUMBER CM'1

Fig. 11. Infrared spectrum of (CD2NOD)n in the region 4000-2000 cm“1.
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Fig. 12. Infrared spectrum of (CD2NOD)n in the region 1550-300 cm '.

In the spectra of (CH2NOD)n and (CDîNODjn two strong absorption bands are 
found at 2400 cm-1 and 3300 cm-1. The former originates from the OD stretching 
vibration while the band at 3300 cm-1 is the OH stretching band also observed in 
the spectra of (CH2NOH) and (CD2NOH) n. This shows that both of the two OD 
deuterated samples still contain OH groups. Now, the change in dipole moment 

with respect to the vibrational coordinate which determines the integrated 

absorption intensity of a fundamental band, is expected to be considerably smaller 
for the OD vibration than for the OH vibration, thereby giving rise to a lower 
intensity of the OD band as compared with the OH band. This makes it difficult 
to estimate the relative content of OD groups in the samples of (CH2NOD)n and 
(CD2NOD)n merely by comparing the observed intensities of the OD and OH 
stretching bands in the two spectra. However, since the observed intensity of the 
OD band in the spectra of (CH2NOD)n and (CD2NOD)n is greater than, and 
about equal to the intensity of the OH band, respectively, one may conclude that 
the degree of deuteration for both samles is considerably higher than 50 %. By 
comparing the intensity ratios for other bands in the spectra of the two samples the 
content of OD groups has been estimated to about 80-90 % for the (CH2NOD)n 
sample and 70-80 % for the (CD2NOD)n sample. Although deuteration is thus 
far from complete it has proved possible to unambigously assign the fundamental 
bands of (CH2NOD)n and (CD2NOD)n and to obtain reliable values of the band 
frequencies.
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As discussed above the interaction between adjacent chains in amorphous 
polymers is expected to produce a broadening of the infrared absorption bands. 
This is in good agreement with the experimental results of the present investiga
tion. No sharp bands are observed in the spectra, the half-band widths of most 
of the bands being 20-40 cm-1. However, a few bands show greater half-band 
widths. The band at 3300 cm-1 (O-H stretching) seen in the spectra of (CH2NOH) n 
and (CD2NOH)n, and the band at 2415 cm-1 (O—D stretching) observed in the 
spectra of (CH2NOD)n and (CD2NOD)n display half-band widths of ca. 400 
cm-1. The exceptional broadening of these two bands almost certainly arises from 
inter-chain and perhaps intra-chain hydrogen bonding. Likewise, the bands at 
430 cm“1 and 335 cm“1 in the spectra of (CH2NOH)n and (CH2NOD)n, respec
tively, which originate from the OH and OD out-of-plane deformation modes, 
are rather broad with half-band widths of 100-150 cm“1. For the 1460 cm“1 
band (OH bending), however, the broadening is less pronounced, the half-band 
width being only 50-60 cm“1.

2. Procedure of Assignment
It follows from the above discussion, that the number of fundamental bands which 
one will expect to find in the infrared spectrum of poly(formaldehyde oxime) is 
3? — 4 = 14, since there are six atoms in the repeating unit (cp. Fig. 1) and all the 
normal vibrations are infrared active according to the selection rules.

For the assignment of the observed bands to fundamental frequencies the 
following procedure was adopted :

(1) Bands which shifted appreciably on deuteration of OH groups were assigned 
as OH vibrations.

(2) Bands which showed appreciable shifts on deuteration of CH2 groups were 
assigned as vibrations involving CH2 motions.

(3) Bands which were only slightly affected on deuteration of OH groups and 
CH2 groups must correspond to skeletal vibrations.

(4) The assignments of the fundamental frequencies of poly(formaldehyde 
oxime) should compare reasonable well with the results obtained by other 
workers for related polymers such as polymethylene, polyoxymethylene and 
polyvinyl alcohol (see Table 3).

As far as points (1), (2) and (3) are concerned it must be kept in mind, however, 
that coupling between OH(OD) or CH2(CD2) deformation vibrations and skeletal 
vibrations may decrease the isotopic frequency shifts for the OH and CH2 defor
mation bands considerably, while on the other hand appreciable shifts of the 
skeletal bands will be observed as a result of the coupling.

In general one may conclude that whenever the ratio /vu of an OH or a CH2 
group vibration frequency to the new frequency arising on deuterium substitution 
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has a value in the range 1.3-1.4, the OH (and OD) or CH2 (and CD2) vibration 
in question may be considered a “pure” group vibration. For “pure” skeletal 
vibrations vH / vD will be close to 1.0, while ratios of 1.1 -1.2 for hydrogen vibrations 
as well as skeletal vibrations are indicative of strong coupling and therefore of 
“impure” or “mixed” vibrations.

V. Fundamental Frequencies
As already mentioned there are 14 fundamentals, viz nine of species Æ and live of 
species d” (cf. Table 1), whose assignments will be discussed in the present section. 
Using the approximation of group vibrations six of the fundamentals correspond 
to CH2 vibrations and three to OH vibrations, the remaining five being skeletal 
vibrations (cf. Figures 3, 4 and 5). The resulting assignments are shown in Table 2. 
It can bee seen that the fundamental frequencies of poly(formaldehyde oxime) 
formed by polymerisation (A) and by polycondensation (B), respectively, are 
almost identical, so that it is reasonable to conclude that the structures of the 
compounds A and B must also be very similar. For this reason and for the sake of 
simplicity the frequency values mentioned in the discussion below refer to the 
spectra of the compound B unless otherwise stated.

Table 2. Assignments and wavenumbers of fundamental bands for poly(formaldehyde oxime) and its 
deuterated species *.

(CH,NOH)n (CD2NOH)n (CH2NOD)„ 
B

(CD,NOD)n
BAssignments Species A B A B

”1 A’ 33OOa vs br 3290“ vs br 3290“ vs br 3300“ vs br 2435“sbr 2425“s br
”2 A’ 2923 s 2924 s 2195 w 2202 w 2924 s 2195 sh
”3 A’ 2904 sh 2905 sh 2098 m 2101 m 2905 sh 2098 m
v4 A’ 1460 s 1460 s 1455 s 1455 s 1177 m 1168 m
”5 A’ 1444 sh 1444 sh 1130 w 1130 w 1442 m 1120 sh
rio A” 1364 s 1364 s 1216 s 1217 s 1363 s 1214 s
V11 d" 1280 sh 1270 sh 915? w 916 ? w 1270 sh —
”12 d” 1148 s 1148 s 1012 m 1011 m 1147 s 1001 m
r6 d’ 1035 m 1031 m 968 m 968 m 994 m 940 m
”7 d’ 957 s 958 s 811 m 810 m 957 s 809 m
”8 d’ 841 s 841 s 799 s 799 s 837 s 795 s
”9 d’ 540 m 539 m 474 m 474 m 527 m 468 m
”13 d” 457 sh 458 sh 442 sh 442 sh 452 m 435 m
”14 d” 430“s br 437“ s br 395 s 397“ s —335“ m br 359 m

* Abbreviations used: s, m, w, v, sh, br indicate strong, medium, weak, very, shoulder and broad, respectively. 
A and B denote two different ways of preparing the compounds (see text).

“ Band position dependent on the concentration of the sample in the disc and on the alkali metal halide used as 
matrix (see text).
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1. CH2 Vibrations
In the C—H stretching region a strong absorption band is observed at about 2900 
cm-1 in the spectrum of (CH2NOH)n, the frequency at intensity maximum being 
2924 cm-1. Shoulders are seen on the low frequency side of the band at 2905, 2875 
and 2855 cm-1. The bands at 2924 and 2905 cm-1 are assigned to asymmetric and 
symmetric CH2 stretching vibrations, v2 and v3, in good agreement with the values 
2937 and 2908 cm-1 obtained for polyvinyl alcohol (cf. Table 3). The remaining 
two bands are assigned as the first overtones of the OH bending vibration v4 and 
the CH2 bending vibration v5, the calculated values being 2v4 = 2920 cm-1 and 
2v5 = 2888 cm-1. The observed anharmonicities, J'Obs.-1'caie.> of -A5 cm-1 and 
-33 cm-1, respectively, are, however, somewhat larger than expected for OH and 
CH2 deformations, probably because of Fermi resonance with v3 and with the OH 
stretching vibration at 3290 cm-1. In the spectrum of (CD2NOH)n the only band 
observed around 2900 cm-1 is a band of medium intensity at 2877 cm-1 which 
must therefore be 2r4 (observed at 2875 cm-1 in the spectrum of (CH2NOH)n). 
The v2 and v3 bands are found in the expected region at ca. 2200 and ca. 2100 
cm-1, the isotopic frequency shifts being of the magnitude expected for “pure” 
group vibrations.

Of the four CH2 deformations the CH2 bending vibration v5 is assigned to a 
shoulder of medium intensity at 1444 cm-1 on the low frequency side of the strong 
band at 1460 cm-1 which corresponds to the OH bending vibration r4 (see below). 
On C-deuteration the 1444 cm-1 band shifts to 1130 cm-1, the ratio being
close to 1.3, while the 1460 cm-1 band is barely affected. On deuteration of the 
OH groups v4 is weakened considerably so that v5 appears cleanly at 1442 cm-1. 
The strong absorption at 1364 cm-1 undoubtedly corresponds to the CH2 wagging 
vibration v10 which is found in the same region in the spectra of (CH2)n, (CH2O)n 
and (CH2CHOH)n (cf. Table 3). The isotopic frequency shift on C-deuteration is, 
however, only about 150 cm-1, which yields a frequency ratio vH/vD of only 1.12, 
indicating that the vibration is very “impure”. As discussed at greater length 
below this is due to strong coupling between v10 and the skeletal vibration v12 in 
either (CH2NOH)n or (CD2NOH)n.
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Table 3. Compilation of fundamental vibration frequencies for poly(formaldehyde oxime) (com
pound B) and some related polymers.

Approximate 
type of 
vibration

(CH2)n3-4
cm-1

(CH2O)n5
cm-1

(CH2CHOH)n6’7
cm-1

(CH2NOH)n
cm-1

OH stretch. — — ~3340 ~3290
CH2 asym.stretch. 2919 2979

2978
2937 2924

CH2 sym.stretch. 2851 2919 2908 2905
OH bend. — — ca. 1430c 1460
CH2 bend. 1473

1463
1471 1428e 1444

CH2 wag. 1367“
1352“

1434
1381

1383e 1364

CH2 twist. 1306“ 1286 ? 1270
CC,CO or CN asym.stretch. 1131” 1097

1091
1141 1148

CC,CO or CN sym.stretch. 1061b 932 913 1031
CH2 rock. 731

720
1235“
903

849f 958

CO or NO stretch. — — 1093 841
CO or NO bend. — — 480 539
CO or NO wag. — — 410 458
OH wag. — — 610 437

“ Observed for amorphous polymer.3
b From the Raman spectrum.
c Coupling band: coupling of OH bending and CH2 (or CH) wagging modes.
d Coupling band: CH2 rocking mode coupled with COC bending and CO sym. stretching modes. 
e From the infrared spectrum of (CH2CHOD)n.
r Observed for amorphous polymer.6

The CH2 twisting vibration is found at 1306 and 1286 cm-1 for (CH2)n and 
(CH2O)n, the bands being of very low intensity as a result of the small change in 
dipole moment during the vibration. For this reason the weak shoulder observed 
at about 1270 cm-1 for (CH2NOH)n is assigned to the twisting vibration vH. On 
C-deuteration the band disappears and a weak band is then seen at 916 cm-1. 
The latter is believed to correspond to the CD2 twisting vibration (which is found 
at 909 cm-1 for (CHz)n) possibly overlapped by the combination band v9 + v13 = 
916 cm*1. Just as for polyoxymethylene the ratio vH / vD is close to 1.4 indicating 
that the CH2 twisting mode is a “pure” vibration.
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The CH2 rocking vibration in (CH2O)n has been assigned to a very strong band 
at 903 cm-1, and for (CH2CHOH)n to a band of medium intensity at 849 cm-1. 
In (CH2NOH)n two strong absorptions occur in this region, one at 958 cm-1 and 
the other at 841 cm-1. For (CD2NOH)n these bands are shifted to 810 cm-1 and 
799 cm-1, respectively. Because of the larger isotopic shift of about 150 cm"1 the 
band at 958 cm"1 must be due to the CH2 rocking mode v7, whereas the 841 cm"1 
band is due to a skeletal vibration, the N-O stretching vibration v8 (see below). 
The 810 cm-1 band of medium intensity is assigned to CD2 rocking since the 
integrated absorption intensity of a CH2 band in general decreases upon deuterium 
substitution ; the strong band at 799 cm-1 must therefore arise from N—O stretching 
in (CD2NOH)n. The low frequency ratio vH/vD of 1.18 for the rocking vibration 
shows that it is considerably “mixed” like the CH2 (or CD2) wagging, the rocking 
vibration and the skeletal vibration v9 being strongly coupled (see below).

3. Skeletal Vibrations
The bands due to the five skeletal vibrations are found in the region 1200-400 cm-1.
The asymmetric C—N stretching mode v12 is assigned to the strong band at 1148
cm-1 in good agreement with the assignments for the corresponding skeletal
vibrations of (CH2)n, (CH2O)n and (CH2CHOH)n (cf. Table 3). On C-deutera-

2. OH Vibrations
The O-H stretching vibration v1 of (CH2NOH)n occurs in the spectrum as a very 
strong and extremely broad band at about 3300 cm-1 which shifts to 2435 cm-1 on 
deuteration of the OH groups. Shoulders are observed in the spectrum of the 
(CH2NOD)n sample on the high frequency side of both bands, at approximately 
3420 and 2560 cm-1. These additional bands probably correspond to the asym
metric O-H and O-D stretching vibrations of HDO and D2O, respectively, and 
arise from a small residue of D2O and HDO in the sample.

The two OH deformations, viz the in-plane deformation (or bending) v4 and 
the out-of-plane deformation (or wagging) v14, are observed as strong, broad 
absorptions at 1460 and ca. 435 cm-1. For (CH2NOD)n they are shifted to 1177 
and ca. 335 cm"1, respectively, the two bands being of medium intensity. The 
assignment of the OH bending vibration is in good agreement with the values of 
ca. 1430 and 1477 cm"3 1 * * * which have been obtained for (CH2CHOH)n and solid 
acetone oxime (CH3)2C = NOH,8 respectively, while the OH wagging frequencies 
of 610 and 790 cm-1 for these compounds are considerably higher than that found 
for (CH2NOH)n. However, the frequency ratio vH/vD = 1.30 shows that the 435 
and 335 cm-1 bands are due to hydrogen and deuterium vibrations, respectively, 
and for this reason must be assigned to v14.
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tion the band shifts to 1011 cm-1. However, this vibration is not appreciably 
affected by deuteration of OH groups, the band being observed at 1147 cm“1 for 
(CH2NOD)n. The large isotopic shift is an indication of strong coupling between 
the asymmetric C-N stretching vibration and a hydrogen (or deuterium) vibra
tion, the observed frequency ratio vH/vD being as high as 1.14. On the other hand, 
as mentioned above, the frequency ratio for the CH2 wagging v10 is unexpectedly 
low (1.12). Since coupling can occur only between vibrations of the same sym
metry species it follows that it must be the asymmetric C-N stretching- and the 
CH2 (or CD2) wagging mode which couple strongly. It is therefore not really 
valid to ascribe the observed bands to “asymmetric C-N stretching” and “CH2 
(or CD2) wagging” since the actual mode of vibration in this case is a combination 
of both.

The symmetric C-N stretching (or CON bending) mode v6 gives rise to a band 
of medium intensity at 1031 cm-1 which shifts to 968 cm-1 on C-deuteration. The 
isotopic shifts indicates coupling, probably with the CH2 (or CD2) rocking 
vibration, both vibrations being of symmetry species A\ On deuteration of the 
OH groups the band appears at 994 cm-1, the ratio vH/vD = 1.04 indicating weak 
coupling probably to the OH (or OD) bending vibration for which vH/vD = 1.24. 
As already mentioned, the strong band at 841 cm-1 is assigned to the N—O stretch
ing mode which like the v6 band is affected by C-deuteration, showing that the 
N-O stretching vibration is also a “mixed” vibration.

The remaining two skeletal bands, due to the NO bending mode v9 and the 
NO wagging mode v13, are expected to be found in the region below 800 cm-1. 
In polyvinyl alcohol the CO bending frequency is situated at 480 cm“1 and the 
CO wagging at 410 cm“1 (cf. Table 3). The band of medium intensity at 539 cm“1 
in the spectrum of (CH2NOH)n is therefore assigned to vg whereas the shoulder 
which is just observable at ca. 458 cm“1 on the high frequency side of the strong 
band v14 is presumed to correspond to v13.

The assignments are supported by the results obtained for the deuterated com
pounds. For (CH2NOD)n the bands are observed as separate bands of medium 
intensity at 527 and 452 cm-1, respectively, while the 458 cm“1 band shifts on 
C-deuteration to 442 cm“1. The 539 cm“1 band, however, shifts to 474 cm“1 for 
(CD2NOH)n, the high frequency ratio vH/vD of 1.14 revealing strong coupling 
between the NO bending- and probably the CH2 (or CD2) rocking vibrations.

4. Poly(formaldehyde-d2 oxime-d)
The spectrum of (CD2NOD)n supports the assignments given above. All the 
fundamental CD2 bands and bands due to skeletal vibrations coupled to CH2 
(or CD2) vibrations are observed at frequencies close to but slightly lower than 
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those observed for (CD2NOH)n. Similarly, the OD bands are found at slightly 
lower frequencies than for (CH2NOD)n, except for the OD wagging which ap
pears at 359 cm-1, i.e. at a higher frequency than in (CH2NOD)n. The origin 
of this effect may be differences in hydrogen bonding in (CD2NOD)n and 
(CH2NOD)n.

VI. Other Bands

1. Terminal Groups
Since the poly(formaldehyde oxime) chains contain a finite number of repeating 
units, bands due to the terminal groups of the chains are expected to appear in 
the infrared spectra provided that the number of units is not too high, that the 
integrated intensities of the terminal group absorption bands are not too low, and 
that the bands are not obscured by other bands of the polymer.

When poly(formaldehyde oxime) is formed by polymerisation the composition 
of the polymer may be as in I or II below,

HO-(CH2-N-) „ H HO-(CH2-N-) n _! CH = NOH
i i

OH OH
I II 

one of the terminal groups in formula II being an oxime group. When the polymer 
is formed in solution by polycondensation it may contain one — CH2OH terminal 
group (formula I) but it is also possible^ that it contains an —NHOH terminal 
group (formula III) or that both of the terminal groups are —CH2OH groups 
(formula IV) :

H-N-(CH2-N-)nH

OH OH
III

HO-(CH2-N-)nCH2OH
i

OH
IV

The -CH2OH group should give rise to a band near 1050 cm-1 due to the C—O 
stretching vibration. In the spectrum of (CH2NOH)n formed by polymerisation 
(A) a weak shoulder is observed at 1062 cm-1. However, in (CH2NOH)n formed 
by polycondensation (B) a band of somewhat higher intensity appears at 1061
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WAVENUMBER CM"' WAVENUMBER CM"1

Fig. 13. Infrared absorptions of (CH,NOH)n in the region 1100-1000 cm '. Left: compound A. 
Right: compound B.

cm-1, separated from the 1031 cm'1 band (v6) (cf. Fig. 13). Both bands are be
lieved to be due to the C—O stretching of the —CH2OH group, the difference in 
intensity indicating that the concentration of —CH2OH groups is higher in com
pound B than in compound A. This may be explained partly by assigning formula 
IV for B and formula I for A, and partly by assuming the occurrence of fewer 
repeating units in the chains ofB. For the deuterated analogues of compound B the 
C-O stretching band is found at 1034 cm-1 for (CD2NOH)n and at 1050 cm-1 for 
(CH2NOD)n, the isotopic shifts being of the expected magnitude; this band is not 
observed in the spectrum of (CD2NOD)n since it overlaps with other bands.

In the spectrum of (CH2NOH)n (both A and B) the weak band observed at 
893 cm-1 is somewhat more intense for A than for B. This band is ascribed to the 
-NHOH terminal group or the combination v13 + v14 which in the spectrum of A 
is presumed to coincide with the N-O stretching mode of the -CH = NOH 
terminal group. This is in good agreement with the infrared results for formal
dehyde oxime CH2 = NOH, obtained by Califano and Lüttke,8 who found the 
N-O stretching mode at 888 cm-1. For (CD2NOH)n this band appears as a weak 
shoulder at 896 cm-1. The weak band at 878 cm-1 in the spectrum of (CH2NOD)n 
(compound B) is probably associated with the N-O stretching mode of the 
-NDOD terminal group, the frequency for ND2OD being 874 cm-1. However, 
it may also be interpreted as being the combination band (v7 + vI3) — v9 = 882 
cm-1. The weak, broad absorption at 842 cm-1 in the spectrum of the fully deuter
ated compound B is probably a superimposition of several combination bands 
lying in the region 827-855 cm-1.

Finally a weak, broad band at ca. 485 cm-1 in the spectrum of (CH2NOH)n, 
which is somewhat more intense for B than for A, is assigned to the OH wagging 
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vibration of the -CH2OH terminal group since it disappears on the deuteration 
of the OH groups. However, the OH(OD) wagging is not observed in the spectra 
of the deuterated species because of overlapping with strong fundamental bands.

2. Overtones and Combinations
In addition to the fundamental bands a considerable number of weak bands have 
been measured and interpreted as being overtone and combination bands, many 
of the bands appearing in the spectra as shoulders. A striking feature is that it has 
been necessary to explain most of the bands as difference bands. This is due to the 
considerable population of the low lying levels for the modes v9, v13 and v]4.

The remaining bands have been interpreted as binary summation bands, ex
cept for a few bands which have been explained as ternary summation bands. The 
assignments of all the combination bands of (CH2NOH)n and its deuterated species 
will be given in a separate paper.9

Although the combination bands are generally much weaker than the funda
mentals, two such bands of medium intensity have been observed in the spectrum 
of (CH2NOH)n. As already mentioned above the band at 2875 cm-1 is assigned 
to the first overtone of the OH bending mode v4, the exceptionally high intensity 
of the band being due to Fermi resonance, probably with the symmetric CH2 
stretching vibration v3 and the OH stretching vibration v,. The band observed at 
1121 cm-1 which is not seen for (CD2NOH)n and (CH2NOD)n, is interpreted as 
(v12 + ’’u) —' vi3 = 1127 cm-1, in agreement with the deuteration experiments.

VII. Conclusion

The vibrational analysis of the infrared spectra of poly(formaldehyde oxime) and 
its deuterated analogues presented above lends strong support to the conclusion 
that poly(formaldehyde oxime) is a chain polymer, the carbon-nitrogen skeleton 
of which is a planar zig-zag chain. It has been established that the repeating unit 
of the extended polymer chain is -CH2NOH—.
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§ 1. Introduction
The energy loss of an ion beam traversing matter is a phenomenon of basic 
interest to atomic physics and has been the subject of much theoretical and 
experimental work. However, there is still a great need for a better under
standing of the details of the stopping processes.

It is the purpose of the present work, through accurate measurements to 
test the Lindhard-Scharff model (Lindhard and Scharff 1953, 1960) and its 
refinements for the average energy-loss (Bonderup 1967) and energy straggling 
(Bonderup and Hvelplund 1971). Especially it is of interest to examine the so- 
called shell corrections at the present rather low energies, and to investigate 
Sigmund’s molecular correlation effect in energy straggling (Sigmund 1976).

A detailed understanding of the underlying mechanisms is imperative for 
obtaining the kind of comprehensive and accurate energy loss and straggling 
information necessary in, for example, a composition analysis of thin films via 
Rutherford-backscattering or nuclear reaction techniques.

We have carried out a systematic investigation of the stopping power and 
energy straggling for hydrogen and helium ions in H2, He, N2, O2, CO2, Ne, 
Ar, Kr, and Xe at ion energies 40 keV < EH V 1 MeV and 100 keV < EHe < 
2.4 MeV. Gaseous targets were chosen so as to avoid specific solid-state effects 
that might obscure especially the straggling results.

The present paper deals with the stopping-power results only. A forthcom
ing publication (Besenbacher et al. 1980) will deal with the straggling results, 
some of which have already been published (Besenbacher et al. 1977).

After a brief review of the energy-loss theory in §2, the experimental proce
dure and data treatment will be discussed in §3. In §4, the experimental results 
will be presented and compared with empirical stopping-power tabulations and 
other published results and, finally, in §5, the experimental data will be dis
cussed and compared with theory.

§2. Theory
As discussed by Bohr (1948), two distinctly different mechanisms are responsible 
for the slowing-down of nonrelativistic charged particles: (z) Electronic stopping, 
i.e., energy loss to excitation and ionization, and (zz) Nuclear stopping, i.e., 
energy transfer leading to translatory motion of the struck atom as a whole. 
In the present velocity range v > v0 (v0 is the Bohr velocity g2/h), and with our 
experimental geometrical arrangement, the nuclear energy loss is almost neg
ligible (see below).
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At high velocities, where

a quantal perturbation treatment is applicable and gives the wellknown Bethe 
formula (Bethe 1930). According to this formula, the specific electronic energy 
loss suffered by a heavy incoming particle with charge and velocity v pene
trating a target of atomic number ^2 and density A" (atoms per unit volume) 
is given by

Here, m and — e are the electron mass and charge, respectively, and c the velo
city of light. The main parameters of the Bethe formula are the mean ionization 
potential I and the shell corrections C/Zz- The former is defined by

log I — (4)

where foi are the dipole oscillator .strengths corresponding to the transition 
frequencies cooi for the atomic system. A direct calculation of I from this formula 
has until recently been impeded due to the lack of knowledge about the distri
bution of oscillator strength in the relevant energy region, i.e., from 10-1000 eV. 
In a Thomas-Fermi model the calculation of I is very much simplified since 
foi is a function of w/Â)2 only and Bloch (1933) showed within this model that

If^z — constant. (5)

This result is in qualitative agreement with the experimental results for heavier 
atoms and empirically Io is of the order of 10 eV. For lighter atoms the cut-off 
in /(ft>,^2) close to the Rydberg frequency leads to a somewhat higher value 
of Z/^2 (Lindhard 1964).

To calculate Z(y,^2) in formula (2) and thereby to determine the mean 
ionization potential and the shell corrections, Lindhard and Scharff (1953, 
1960) considered the target as a collection of free electron gases. The function 

pertaining to an atom was obtained as an average over the electron 
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cloud of the quantity L(q,u) for a gas of density o (Lindhard 1954). As a first 
approximation, they introduced the expression

E(p,£2) = / 47rr2o(r)-Z(r,ö)<yr
<2 9

(6)

Here g(r) is the electron density of the target atom, coo(r) is the local plasma fre
quency (4.-7^2g(r)/m)1/2 ; and y is a constant of the order of y/2 by means of 
which they took into account the binding of the electrons. In the Lindhard- 
Scharff model the mean ionization potential can be calculated from

<Mr)] dr (7)

Bonderup and Lindhard (1967) and Chu and Powers (1972) calculated I from 
this formula using Hartree-Fock charge distributions and found significant 
oscillations superimposed on a slow decrease of //^2 with increasing £2 • Even 
though formula (7) was based on qualitative arguments, the results of the cal
culations agree fairly well with experiments. It deserves attention that very re
cently Inokuti et al. (1978) calculated I values by directly using formula (4) 
in a form appropriate for a continuous distribution of oscillator strengths. They 
started with the Hartree-Slater central potential model and carried through 
explicit calculations of df/dE for the entire spectrum from the dipole matrix 
elements between initial and final electron states. The variation of their //£2 
values with £2 is similar to that based on the Lindhard-Scharflf model which, 
however, generally gives approximately 30% higher results. This ratio is close 
to the number y ~ -\/2 which appears as a factor in the I value obtained from 
formula (7). This result lends strong support to formula (7).

The results based on the Lindhard-Scharff model were so promising even 
down to velocities of the order of a few times v0 that it was natural to repeat the 
averaging procedure in formula (6) with a more accurate expression for the 
electron gas function L(q,v'). This was done by Lindhard and Winther (1964), 
and Bonderup (1967) applied their electron gas results to compute the shell 
corrections in formula (3). The first-order Lenz-Jensen distribution was 
used for the function g(r). The function C/£2 is useful in a comparison between 
theory and experiment since, in contrast to the I value, this quantity is rather 
insensitive to the details in the distribution of the outermost electrons.

Since the Bethe treatment is based on a first-order perturbation calculation, 
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the resulting stopping power is proportional to . However, both range meas
urements by Barkas (for a survey, see Heckman 1970) and accurate p and a 
stopping power measurements by Andersen et al. (1969) provided convincing 
evidence for the existence of higher-order correction terms to the stopping 
formula. Expanding £(ö,^2) in powers of we have the expression

Z. = T0 + ^1-L1 + ^-Z2 (8)

where Lo is given by Eq. (3) whereas Lx corresponds to a -correction and 
L2 to a ^-correction in the Bethe stopping-power formula. Terms of still higher 
order are neglected.

The ^?-term, often called the Barkas correction, stems from adiabtic screen
ing effects and receives contributions from both close and distant projectile
electron collisions. An electron gas calculation by Lindhard (1976) and Esbensen 
(1977) gave the following correction factor

_ -^)iC (X>q j ,Q,
“ 2 ' m-v3 'L° 1 }

This result is approximately twice that of previous calculations by Ashley et 
al. (1972, 1973) and by Jackson and McCarthy (1972), both of which neglect 
the contribution from close collisions.

Bloch’s (1933) universal stopping formula which is valid for all values of 
xB describe the transition between Bethe’s quantal and Bohr’s (1948) classical 
stopping formula and contains these in the limits of small and large xB, re
spectively. Thus, Bloch’s formula contains a correction to the Bethe formula. 
The correction derives from close collisions only and to first order in xB it is given 
by

<JZ,2 =-1.202 =-1.202-^- (10)

As pointed out by Lindhard (1976), the Bloch correction is important when 
comparing p and a measurements.

At low velocities, v < v0^3/3, the nuclear as well as the electronic collisions 

contribute to the slowing-down. The total stopping cross section .S' = „V 1 
may be written as

.S’ = Se T Sn . (H)

Simple theoretical considerations lead to velocity-proportional electronic stop
ping, and a Thomas-Fermi calculation by Lindhard and Scharff (1961) gives
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Se = Çe87ie2a0 Z1Z2
(Zr+Z^'T2

(12)

where £e ~ Ti1/6 .
In our experimental setup, collisions contributing heavily to the nuclear 

stopping cause the particles to be scattered out of the angularly narrow forward 
directed analyzed beam. Hence, only the restricted nuclear-stopping power, 
denoted by S* , contributes to the measured stopping power. The quantity 
S* was calculated by Fastrup et al. (1966), and their result may be written as

S* =2.61 x 10-16 Z2 Z?
£[keV] (13)

Here, the dimensionless quantity <h(r) is a function of r = jVAÄttö2 only, where 
a is the TF screening radius, a = 0.8853 a0 (Zi/3 +-^22/3)’ /‘i and NAR the target 
thickness. Based on the Lenz-Jensen differential-scattering cross section, the 
function <I>(t) has been calculated numerically and the result is shown in Fig. 1.

Fig. 1: Function used for calculation of 
the restricted nuclear stopping power 5*. 
For explanation, cf. text.

§3. Experimental Procedure and Data Treatment
To perform a systematic investigation of energy loss for light ions in gases, we 
have measured the stopping powers of nine stopping gases (H2, He, N2, O2, 
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CO2, Ne, Ar, Kr, and Xe) for 40-keV to 1-MeV hydrogen and 100-keV to 
2.4-MeV helium ions. To cover a large energy region, the measurements were 
carried out at three different accelerators, an HVEC 2-MV Van de Graaff with 
magnetic analysis of the energy-degraded beam and a 400-kV Van de Graff'and 
a 100-kV electromagnetic isotope separator both with electrostatic energy ana
lysis. In Table I are shown the energies used at the different accelerators.

Table 1 
_____________________________ Eh_______________________ EHe____________  
2-MVV.d.G. 0.2 < Eh < 1 MeV 0.2 % EHe % 2.4 MeV
400-kV V.d.G. 50 < Eh < 300 keV 100 < EHe < 300 keV
100-kV sep.35 <Eh< 70 keV

The overlap of ion energies investigated with the different machines and ana
lyzing techniques is important since it gives a valuable check on the reproduc
ibility of the experimental data.

The experimental setups are shown in Figs. 2 and 3. After acceleration and 
momentum analysis in a double-focusing sector magnet, the beam is passed 
through the differentially pumped target region, energy-analyzed by means of 
an analyzing magnet or an electrostatic analyzer and detected by a solid-state 
detector.

J. Stopping cell, gas equipment, and pressure measurement.
The stopping cell is a 504 ± 2 mm long, stainless-steel cylinder of 40-mm dia
meter. Each end of the gas cell is sealed with brass discs with circular, 0.2-mm 
diameter apertures. By means of a vacuum feed-through, which allows positi
onal adjustments under vacuum, the gas cell is mounted in a 600-mm long 
cylinder with 2-mm diameter circular entrance and exit apertures. The pressure 
in the second differential pumping section and the beam lines is typically around 
1-3 X10-6 torr, while the pressure in the first differential pumping region is 
Pi ~ 10_4Tg , Pa being the pressure in the gas cell. The purity of the gases was 
stated by the commercial supplier (Norsk Hydro) to be better than 99.9%.

It is crucial for obtaining reproducible results that the pressure in the gas 
cell is kept constant. The stability of the target pressure was maintained via a 
motor-driven, servo-controlled needle valve (Granville-Phillips Company, 
Series 216). The gas-cell pressure, 0.1 fo PG < 2 torr, was measured with a 
membrane manometer (C.G.S. Datametrics, type 1083) equipped with a 
Barocel Pressure Sensor, type 523 H-15. The stated hysteresis was 0.003% and 
the instrument ranged from zero to two torr with a calibration uncertainty of 
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0.5%. Owing to the automatic digital readout of the manometer, it was possible 
to keep a running check of the pressure stability, which was better than 1%.

A mercury thermometer was placed in thermal contact with the vacuum 
feed-through and thus in contact with the gas cell. The measured temperature 
was T = (24.5 ± 2.5)°C which, to within the stated accuracy, is identical to 
the target-gas temperature since the localized heating effects caused by the 
energy dissipation of the passage of the beam through the gas cell can be shown 
to give rise to a temperature increase of the target gas of less than 0.7°C. This 
estimate is based on a steady state. In a previous calculation of the localized 
heating effect by Bourland et al. (1971) the heat conductivity is neglected. 
Hence a steady state is not established, and their calculation gave too high an 
increase of the target temperature.

The target thickness JVAÄ (molecules/cm2) is found by integrating the local 
number density /z(x) along the beam-path length, i.e.

JVAÆ=[ p(x)dx. (14)
J —co

According to Heinemeier et al. (1975), /z(x) can be estimated in the following 
way (i) The pressure is constant within the target cell, (zz) Outside the target 
cell the density is found as a sum of two terms (a) A constant corresponding to 
the pressure in the differentially pumped region. (£>) A varying term which is 
equal to the target pressure out to a distance equal to the target aperture and 
then falls off as the inverse square of the distance. Based on this and assuming 
the ideal gas law we obtain for the target thickness

A"AÄ(mol/cm2) —y^^^/z(cm)

where
= ^ + 2(q + r2) + (^i — ^)Pi/PG . (16)

A = 2.6871 X 1019 (molecules/cm3) is Loschmidt’s number, (£,PG) and (^1,P1) 
are the length of and the pressure in the gas cell and the first differentially 
pumped cylinder, respectively, and rr and r2 are the radii of the entrance and 
exit apertures, respectively. In the present work, the effective length is approxi
mately 0.2% larger than the length of the cell.

B. Energy-analyzing system, detectors, and beam contamination.
The energy-degraded beam was energy-analyzed by a 120-mm radius, 66° 
cylindrical analyzer (Fig. 2) at the 400-kV Van de Graaff and the 100-kV sepa-
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Fig. 2: Experimental setup used at the 400-kV Van de Graaff and at the 100-kV isotope separator.

rator. The analyzer electrodes are 4.9 mm apart and connected to a ~ 12.5 kV 
symmetric high-voltage supply, which corresponds to the deflection of 0.3 MeV 
singly charged particles. Apparatures A and B, two 1-mm-wide slits, and aper
ture D, a 0.42-mm-wide slit, are beam-defining, while the apertures C are used 
to scrape off scattered halos from the beam.

By extrapolation of the FWHM of the measured energy-loss distributions 
to zero pressure, we found an energy-independent relative energy resolution 
(FWHM/E.) of 0.74%.

The energy calibration was carried out at the 400-kV Van de Graaff ac
celerator by means of the 19 F (p, a)16 0 reaction (Eres = 340.46 ± 0.04 keV; 
r= 2.4 i 0-2 keV) as the primary standard. The calibration was checked at 
the 100-kV isotope separator, at which the accelerator voltage was measured 
directly by a high-voltage probe to within i 150 V. The measured beam ener
gies and acceleration voltages agreed within the stated accuracy. The analyzer 
linearity was investigated in connection with measurements of lithium stopping 
powers (Andersen et al. 1978). Li+ and Li++ beams emerging from krypton and 
xenon targets much thicker than the mean-free path for charge-exchange pro
cesses were analyzed and requiring a difference of a factor of two in the reference 
voltages, it was found that the measured energies for Li+ and Li++ agreed within 
± 0.2%. The uncertainty in the absolute calibration of the electrostatic ana
lyzer is estimated to be 0.4%.
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Fig. 3: Experimental setup used at the 2-MV Van de Graaff accelerator.

At the 2-MV Van de Graaff, the energy-loss distributions were analyzed 
by a 40-cm radius, 90° double-focusing sector magnet (Fig. 3). The magnetic 
field was measured with a Hall probe, the integral linearity of which was found 
to be better than 0.5%. The differential linearity of the Hall probe checked by 
a NMR fluxmeter was better than 0.1%. Tantalum slits with openings of 
0.45 mm were placed immediately in front of detector C, and we found a rela
tive energy resolution (FWHM/E.) of 0.10%. The incoming beam was mo- 
mentum-analyzed in a 72° double-focusing sector magnet with an energy dis
persion of SE/E ~ 7x 10-5. Hence, in order to obtain a position-stable beam 
at the target, we used a slit-stabilization system (shown in Fig. 3), which is a 
feed-back system consisting of two vertical stainless-steel “knives” in front of 
the target chamber and a set of vertical deflection plates at the exit of the bend
ing magnet.

For the present stopping-power and straggling measurements, the use of 
solid-state surface-barrier detectors is important. From the detector energy 
spectrum, it was possible (z) to reveal the presence of low-energy, slit-edge- 
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scattered particles and (zzj to identify a possible oxygen-beam contaminant 
with the same kinetic energy as a primary helium beam. The contaminant is 
formed by electron loss between the base plate and the bending magnet from a 
16O + beam accelerated together with He+. Due to the higher pulse-height de
fect (Steinberg et al. 1972) of the oxygen than that of the helium beam, it is 
possible to separate the oxygen and helium beams in the pulse-height spectrum. 
Actually, only once, just after reloading the ion source and under bad vacuum 
conditions, we did observe any substantial contamination.

C. Electronic equipment.
At the 400-keV Van de Graaff and the separator, use of the electrostatic ana
lyzer for the energy analysis enabled us to apply the multiscaling-sweep technique 
previously employed for lateral spread measurements (Knudsen et al. 1976). A 
single-channel window was positioned around the main peak in the energy 
spectrum from the solid-state detector, and the selected signal was fed to the 
multichannel analyzer, running in multiscaling mode. After adequate biasing 
and amplification, the horizontal sweep voltage of the multichannel scope was 
used as an external reference signal for the analyzer high-voltage power supply. 
The energy window of the analyzer was thus swept over the energy distribution 
of the beam synchronously with the multiscaler. Through a simultaneous meas
urement of the reference voltage for the electrostatic analyzer with a digital 
voltmeter, the energies corresponding to the upper and lower ends of each sweep 
were determined, and the energy distribution appeared directly as a spectrum 
in the multichannel analyzer without transformation. Using this sweep tech
nique we did not need any beam normalization, while the experimental equip
ment used at the 2-MV Van de Graaff and shown in Fig. 3 utilized detector 
N as a normalizing device.

D. Data treatment.
With a few exceptions, the pressure in the stopping cell was chosen to make 

the target thickness satisfy the following criterion,

= (Q/7-,,,)2 = >10.

According to Bohr (1948) and Vavilov (1957), Gaussian energy-loss distributions 
are obtained when inequality (17) is fulfilled. This was confirmed by the meas
ured energy spectra. In the inequality (17), Q is the standard deviation of the
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Fig. 4: Momentum distribu
tion of an incident 600-keV 
beam and the same beam 
emerging from an N2 target.

energy-loss distribution, approximated by the Bohr formula (Bohr 1948), 
Qj = 47r^i2^2?4JVAE, and Tm is the maximum energy transfer in a single col
lision with an electron.

With the analyzing magnet, momentum spectra were obtained at each 
beam energy with and without gas in the stopping cell. A typical momentum 
distribution is shown in Fig. 4. From the energy-versus-field relation, the energy 
loss is given by

(18)

where SBIBt is the relative reduction in magnetic field. This shows that for small 
changes (AE/Ej^l), the B axis can be considered as an energy axis. Alterna
tively, the mean energy loss and the standard deviation are determined from

and
<AE> = Ei — (£j + E2)/2 (19)

E2 — Ex
■£ “wTiügf (20)

where Ex and E2 are the energies corresponding to the half-maximum positions 
for the momentum distribution. Formula (19) is preferable to formula (18) in 
a calculation of <AE> due to the larger uncertainty in the determination of 
the peak position compared to the HWHM positions of the distribution.

With the electrostatic analyzer, determination of the primary-beam energy 
was more problematic as transmission of the beam without gas in the cell would 
damage the detector. Hence, the following procedure was adopted: At each 
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selected beam energy, energy-loss spectra for all gases were measured without 
changing any of the accelerator settings which may influence the energy, and, 
at least for one particular gas, energy distributions were measured at three 
different pressures, corresponding to an energy loss of approximately 5, 9, and 
13/0. A straight line was fitted to the three measured average energies versus 
target pressure, and the extrapolation to zero pressure gave a preliminary value 
of the unattenuated beam energy. Provided the stopping power in question 
was energy-independent, this value was correct. This not being the case, the 
preliminary primary energies were used to calculate preliminary stopping 
powers, and primary energies were obtained through iteration. The uncertainty 
in the determination of <AE> from formula (19) was 1.5% (2a). Finally, 
experimental stopping cross sections are obtained as

<AE >
JVAE ’ (21)

E. Stopping cross sections and corrections.
The electronic-stopping cross section Se is derived from the observed stopping 
cross section 50 through subtraction of the restricted nuclear-stopping cross 
section S* given by formula (13), i.e.,

%=%-%*• (22)

For all combinations of target, projectile, and energy, the correction for nuclear 
collisions is less than 0.5%. However, the correction has been taken into account 
whenever it exceeds 0.1%.

The energy attributed to the measured stopping cross section is to first order 
in <SE>/E given by

Eav = Et-<AE >/2 . (23)

An expansion by Andersen et al. (1966) of S(Eav) in powers of < AE >/E gives 
a quadratic correction term to the stopping cross section. As the relative energy 
loss was always less than 15%, this correction was less than 0.1% and hence 
omitted.

E. Experimental accuracy.
First, we summarize the quoted systematic errors stemming from uncertainties 
in the incident-energy E, (0.3-0.5%), the differential (0.1%), and the integral
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(0.5%) linearity of the Hall element, the linearity (0.2%) and the absolute 
calibration (0.4%) of the electrostatic analyzer, the effective target length 
(0.4-0.6%) and, finally, the calibration of the membrane manometer (0.5%).

The non-systematic errors originate from uncertainties in the absolute gas 
temperature (<1%), the pressure in the gas cell (<1%), the HWHM for the 
degraded energy-loss distribution due to counting statistics (1.5%), and the 
determination of the length of the sweeping interval (0.3%).

From the uncertainties, all of which correspond to two standard deviations 
(2<t) , it is concluded that the stopping powers are measured to within an uncer
tainty of 2.5% (2cr).

§4. Experimental Results and Comparison with other Data
The experimental electronic-stopping powers Se for hydrogen and helium ions 
in H2, He, N2, O2, Ne, Ar, Kr, Xe, and CO2 are plotted in Figs. 5-18 as func
tions of Eav. In the figures, the present results have been compared with most 
other published hydrogen and helium energy-loss data. The scatter of our data 
points is consistent with the estimate of the measuring accuracy given above.

A. Hydrogen stopping powers.
Recently Andersen and Ziegler (1977) published tabulations of hydrogen stop
ping powers for all elements in the energy range 10 keV <(jE/amu)<20 MeV. 
These semi-empirical stopping-power fits are plotted in Figs. 5-13. From the 
figures we first note that for most of the targets used, good agreement exists 
between the Andersen and Ziegler semi-empirical stopping-power fits and the 
present experimental results for energies £ 100 keV. However, the semi-
empirical fits have a tendency of being slightly low around the stopping-power 
maximum, and for Xe targets, the fit to our data as well as to those previously 
published is rather poor over a broad energy range. The present results agree 
within the stated accuracy with the averaged ,SH-values found by Reynolds et 
al. (1953), the accuracy of which is 2-4% (2a), while the data obtained by Phil
lips (1953) are systematically ~ 15% lower. Since Phillip’s results are included 
in the data on which the tabulations by Andersen and Ziegler are based, their 
curve appears to be too low for energies E 100 keV.
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Fig. 5: Stopping-power 
results for
hydrogen in H2.

Fig. 6: Stopping-power 
results for 
hydrogen in helium.
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Fig. 7 : Stopping-power 
results for
hydrogen in N2.

Fig. 8: Stopping-power 
results for 
hydrogen in O2.
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Fig. 10: Stopping-power 
results for
hydrogen in argon.

Fig. 9: Stopping-power 
results for 
hydrogen in neon.
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Fig. 11 : Stopping-power 
results for
hydrogen in krypton.

Fig. 12 : Stopping-power 
results for
hydrogen in xenon.
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Fig. 13: Stopping-power 
results for
hydrogen in CO2.
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B. Helium stopping powers.
Very recently, Ziegler (1978) published helium stopping-power tabulations 
similar to those of Andersen and Ziegler (1977) mentioned above. As the present 
experimental results are included in Ziegler’s helium-data base, they constitute 
no independent check of these tables. Hence the tabulations are not included 
in Figs. 14-18. Nor are the polynomial fits made by Ziegler and Chu (1974) 
since for the present gases, these fits are identical to the averaged SHe values 
of the Baylor group (see below) as plotted in Figs. 14-18.

With a setup more or less equivalent to the present one, the Baylor group, 
Bourland, Chu, and Powers (1971) and Chu and Powers (1971) have made a 
systematic investigation of ^-particle stopping cross sections in gases. The stated 
accuracy of their measurements ranges from 1.5% to 3% (2<r). As can be seen 
from the figures, the measurements performed by the Baylor group are higher 
by 1-6% than the present SHe results. This difference is not understood at pre
sent. However, it should be pointed out that the Baylor group employed a non
energy dispersive detector (a Faraday cup), and hence could not reveal the pre
sence of slit-edge-scattered particles and/or a possible oxygen contamination of 
the helium beam. As they have not published the straggling results, it is not 
possible to disclose whether beam contamination and/or pressure fluctuations 
were significant. Finally, as a McLeod gauge was used, the pressure could not 
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be checked continuously. However, it should be noted that the Baylor group 
performed independent measurements in a sealed gas cell, using a solid-state 
detector. These measurements (±5.4% to ±6.7% (2cr)) were not as accurate 
as the differentially pumped gas-cell measurements but they did agree with 
the latter to within the stated accuracy.

In this connection, it should be noted that the reliability of the present meas
urements is enhanced due to the fact that the stopping cross sections for both 
hydrogen and helium ions were measured in the same gases, and the present 
SH data agree with most other SH data.

The stopping cross sections by Hvelplund (1968, 1971) for helium in H2, 
He, O2, and Ne are systematically 10-15% below the present data. This dis
crepancy is difficult to understand since Hvelplund’s equipment was similar to 
that used here. However, it is fair to mention that the data by Fastrup et al. 
(1968), and the lithium stopping power results by Andersen et al. (1978) lie 
10-16% and 20% above Hvelplund’s results, respectively. Hvelplund’s proton 
stopping-power and straggling data (Bonderup and Hvelplund 1971) are in 
much better agreement with our present data.

Using a natural oc-emitter source and a solid-state detector, Hanke and 
Bichsel (1970), Palmer (1966), and Rotondi (1968) measured range-energy 
relations for a particles in Ar, H2, CO2, N2,and O2. Hanke and Bichsel made a 
thorough data evaluation, taking into account corrections for multiple scatter
ing, discrete energy loss (Lewis correction), undetected energy losses in the 
detector gold-surface layer, and adjoining dead layer and energy loss due to 
self-absorption in the source head. Thus, by differentiating the range-energy 
curve, they determined the stopping cross section for helium in argon with a 
claimed accuracy of0.2% for EHe > 2 MeV, decreasing to 1.5% for EHe ~ 1 MeV. 
Palmer and Rotondi did not correct their range-energy results, and this may 
explain why their stopping-power results, especially around the maximum, de
viate significantly from the present data.

By using an 241Am a source and a solid-state detector, Kerr et al. (1966) 
and Wenger et al. (1973) have measured SHe at energies 0.3 EHe< 5 MeV 
by either varying the pressure in the absorber chamber between 0 and 720 mm Hg 
(Kerr et al. 1966) or by changing the distance between source and detector 
with the gas held between them kept at a pressure of 2.54 torr above atmos
pheric pressure (Wenger et al. 1973). Since there is a large uncertainty in the 
energy, which they attribute to the measured stopping power due to the large 
energy loss and as the above corrections to the stopping power are not taken 
into account, it is evident that these measurements are vitiated by large uncer- 
tainties.This is also the case for the data by Ramirez et al. (1969) for similar reasons.
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Fig. 14: Stopping-power results for helium in H2 and He.
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Fig. 15: Stopping-power results for helium in N2 and O2.
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Fig. 16: Stopping-power results for helium in argon and krypton.
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Fig. 17 : Stopping-power results for helium in neon and xenon.
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§5. Comparison with Theory
A. Shell corrections and I values.
Before making any comparison of the experimental results with the calculations 
based on the Lindhard-Scharff model and its refinements, we should emphasize 
that the region of validity of a perturbation treatment for a free electron gas 
is restricted to xB < 1 or v > ^VoZi (Bonderup 1967), i.e., to hydrogen and helium 
energies higher than ~ 100 keV and ~ 1600 keV, respectively. Therefore any 
comparison between the present helium stopping powers and existing calcula
tions should be taken with some reservation.

As argued in §2, it is advantageous to apply the so-called shell corrections 
C/^2 rather than LÇv,^ in a detailed comparison between theory and experi
ment. Introducing Bichsel’s (1964) reduced stopping-power variable,
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(24)

we may deduce empirical shell corrections from the experimental hydrogen 
stopping powers using formulas (2) and (3) as

(C/£2)*P = A"P - log/. (25)

As will be discussed later the shell corrections deduced from this formula are 
not genuine shell corrections and are therefore labelled with an asterix.

In Figs. 19 and 20, experimental shell corrections (C/£2) * obtained from 
formula (25) are presented as a function of energy. The I values used are those 
extracted by Andersen and Ziegler (1977) from their fits to previously published 
data. Comparison is made to Bonderup’s (1967) theoretical calculations (C/^2)s 
and to the empirical shell corrections by Andersen and Ziegler. As an indication 
of the sensitivity of (C/^2) * to uncertainties in the SH data, the distance be
tween the dashed line “3% effect on stopping” and the zero line gives the change 
in (C/^2) * due to a 3% change in stopping power. An increase in stopping 
power gives a lower X value and hence a lower (C/^2) * value.

From Figs. 19 and 20 it is observed that the experimental (C/^2) * data 
deviate significantly from Bonderup’s shell corrections (C/£2)B both in size and 
shape (see, e.g., H->Ne). Until recently, it was believed that this discrepancy 
was due to a defiency in the theoretical model in the energy region discussed 
here. However, all possible deviations from formulas (2) and (3) such as higher- 
order corrections are automatically included in the empirical (C/^2) * values. 
According to formula (8), the correct shell correction is determined from

(C/^2)=A«p -log 7+^+#/,,. (26)

Therefore the experimental (C/^2) * proton values in Figs. 19 and 20 should 
be compared to the following “apparent” theoretical shell-corrections

rø)et = (C/^2)s-(Z1+Z2). (27)

In calculating (C/^2)tft*, we have used the Bloch expression, formula (10), 
for L2. According to the discussion in connection with formula (9), the Barkas 
correction L, has been set equal to twice the quantity given by Jackson and 
McCarthy (1972)

(28)
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Fig. 19: Experimental shell corrections for H2, He, N2, and O2 obtained from Eq. (25) (points), 
compared with Andersen and Ziegler’s semiempirical fit (dashed), Bonderup’s theoretical values and 
those values corrected for higher-order effects, according to Eq. (27). The I values are those given 
by Andersen and Ziegler (1977).

In calculating Lx for the heavier elements, we have extrapolated LXJM slightly 

outside the stated region of validity given by > 0.8. Theoretical shell cor

rections obtained from formula (27) are also plotted in Figs. 19 and 20.
In the cases of N2, Ne, Ar, and Xe, the corrected values (C/^2)t* =

~~ (£i + £2) show perfect agreement with the experimental values (C/^2) *• 
For H2, He, O2, and Kr, the energy dependence of the experimental data 
(C/£2) * agrees much better with the energy dependence of the corrected values
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Fig. 20: Experimental shell corrections for Ne, Ar, Kr, and Xe. See caption to Fig. 19 for further 
explanation.

(C/^)«* = (C/'C2)b — (^i+-^2) than with that of (C/£2)B. However, there is a 
systematic shift in the absolute value between (C/^2) * and (C/^2)*> which 
may originate in the choice of Z value. A change of I to I— Al changes the exper
imental (C/^2) * data by the additive amount AZ/Z. In this way, experimental I 
values are determined from the present data. In Table II, the resulting exper
imental ionization potentials are compared with those given by Andersen and 
Ziegler (1977) and Chu and Powers (1972).
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Table II
/(eV) H2 He N2 O2 Ne Ar Kr Xe
Present results 17.6 40.7 86.7 102.1 139 194 376 497
Andersen-Ziegler 18.8 41.7 86.7 97.7 139 194 358 497
Chu-Powers 92.4 110 160 207 403 529

It is concluded that the present I values, which constitute an independent 
check of the Andersen and Ziegler I values, are in good agreement with these, 
while the theoretical I values by Chu and Powers are systematically too high.

Above, we used the experimental shell corrections (Cl^ * as a standard 
and corrected Bonderup’s theoretical calculations (C/^2)B for comparison. 
Andersen et al. (1977) employed (C/^2)B as a standard and corrected (C/^2) * 
by adding (Zj+Z2) for comparison. The reason for our approach is that in the 
present energy region, we are not able to determine T and Z2 experimentally 
as was done by Andersen and coworkers and hence we could not obtain ex
perimentally determined genuine shell corrections with which to compare the 
theoretical (C/^2)B results.

A different approach is to use the empirical fits for T and L2 extracted from 
the measurements by Andersen et al. (1977) and denoted by LA and L2 , re
spectively. For ^2 > 10, good agreement is found between (C/^2)B — (Zj+Z2)'4 
and formula (27) shown in Figs. 19 and 20, while the agreement becomes in
creasingly unsatisfactory for ^2 < 10. As Andersen and coworkers measured 
stopping powers of Al, Cu, Ag, and Au, their empirical fits for Zj and Z2 should 
be employed only for 13 ^^2 79, in which case they give results which are
consistent with the present data.

Concerning Andersen and Ziegler’s (1977) “fitted shell corrections”, 
{C/^2)az, all higher-order contributions are piled onto these, and (C/ZzY*2 
should therefore be compared with the present results (C/^2) * or with (C/^2)B — 
(Zj+Z2). In the cases of Xe, Kr, Ar, Ne, and O2, there is good agreement 
between (CI^2)AZ and the present data (C/^2) *. For N2, the curve for (C/^2)AZ 
is somewhat higher than (C/£2) *, while for H2 and He, the fit (CIZY)AZ devi
ates both in magnitude and energy dependence from the present results. If 
Andersen and Ziegler had based their fit for H2 and He not on the scarse and 
scattered available experimental data points but had extrapolated the shell
correction fit obtained for other elements with > 3 to the cases of H2 and He, 
the present H2 and He results would have agreed with the general trend on the 

curves.
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B. Experimental determination of the 3 correction.
We assumed above that the Barkas and the Bloch corrections were given by 
the formulas (28) and (10), respectively. Andersen et al. (1977) have demon
strated that this is approximately correct for 7 < vjv0 < 12. In our case we can 
extract information on the higher order terms only when the helium ions 
are known not to carry electrons in a bound state. Equilibrium charge-state 
measurements show that this is the case for EHe^, 1.6-2 MeV. Furthermore, 
from measurements with hydrogen and helium ions only, it is not possible to 
distinguish between £3 and ff corrections. However, based on the results by 
Andersen et al. (1977), it seems reasonable to assume that L2 is given approxi
mately by the Bloch expression, formula (10). As follows from Eqs. (8) and (24), 
experimental Lx values may then be extracted from the formula

L'fp = X^‘ - Xff? - 3Z2. (29)

The uncertainties in Lf are calculated under the assumption that the un
certainty in L2 is ~20%.

In Fig. 21, experimental Ex values for H2, N2, O2, Ne, Ar, and Xe are com
pared with the theoretical estimate for Lx given by Eq. (28), which is a good

Fig. 21: Experimental re
sults for the factor Lx ob
tained from Eq. (29). The
oretical curves for Lx (solid) 
and E (dot-and-dash) are 
Eqs. (28) and (10) respec
tively.
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approximation to the results of Lindhard (1976) and Esbensen (1977). From 
Fig. 21, it is concluded that the experimental Lx values are in good agreement 
with the expression Lx — ‘Ï.L'i™ . This supports Lindhard’s and Esbensen’s value 
for the <j3 correction and thereby the Lx expression used in the preceding section 
in connection with the discussion of shell corrections. It should be noted that 
the deviation of Lp™ from LXM cannot be explained as a charge-state effect 
since the introduction of an effective charge state < 2 would increase the 
Z,/273 values in Fig. 21.

Ranges of Z + and in emulsion for v ~ 2Chowere found to differ by an 
amount corresponding to the value given by Lindhard (1976), while the range 
differences in hydrogen were a factor of five larger than Lindhard’s prediction 
(for a review of the experimental range data, see Heckman (1970)). On this 
background it is important that the present experimental Lx for hydrogen agrees 
with Lindhard’s findings. The large uncertainty in L1(H2) is due to the high 
L(&,/^2) value.

Only Ward et al. (1976) have previously analyzed their data for £3 effects 
for v/u0 < 5. They measured stopping cross sections for hydrogen and helium 
in aluminum and found that, within the experimental uncertainty, the quantity 
(SHe — 4rSH)/SHe was equal to zero for vlv0 ~4.5. From this they concluded that 
no Zi effect was present. However, taking into account the correction, we 
find

^=zàzrHzr=°'84% for
This is in perfect agreement with the results in Fig. 12 of the paper by Ward 
et al., and their data hence confirm the magnitude of the higher-order ef
fects found in this work. .

C. Helium stopping powers.
As mentioned above, it is not possible to make any detailed comparison 

between SHe data and perturbation calculations for a free electron gas at the 
present energies. In spite of this, Rousseau et al. (1971) have used the Lindhard- 
Winther expressions for an electron gas with the charge-densities obtained from 
Hartree-Fock-Slater wave functions to calculate the stopping cross section for 0.4-2 
MeV a particles. The calculations, with which Chu and Powers (1971) compare 
their noble-gas results, are wrong due to problems with the joining of the asymptot
ic expressions by Lindhard and Winther. Comparing the present 5'^results with 
later and corrected calculations by Ziegler and Chu (1974), we find surpris-
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Fig. 22: Stopping cross sec
tions for He penetrating Ar, 
Kr, and Xe compared with 
calculations by Ziegler and 
Chu (1974) based on Lind- 
hard-Winther theory.

E (MeV)

ingly good agreement (to within ± 7% even at energies as low as EHe ~ 600 keV). 
Figure 22 shows the situation for Xe, Kr, and Ar.

D. The ratio SHe/SH as a function of velocity.
As mentioned above, a quantal perturbation calculation of the stopping cross 
section is restricted to velocities v >2^0^i- At lower velocities, it has, never
theless, been suggested that the usual stopping formula (2) be applied with the 
charge number replaced by an effective charge number, i. e.

= (3°)

Many authors have used this approach to analyze experimental stopping
power data in terms of charge states, comparing heavy-ion stopping powers 
with corresponding proton-stopping powers at the same velocity. It should, 
however, be emphasized that no theoretical basis exists for this charge-state 
scaling procedure.

In Fig. 23, the ratio between the present hydrogen and helium stopping 
powers measured at the same velocity are shown as smooth curves. These data 
lead to the following conclusions:



34 40:3

E$ CkeV]

Fig. 23: Experimental stopping-power ratios (solid curves) of He ions to hydrogen ions evaluated 
at the same velocity, compared with Pivovar’s (1961) measured mean-square charge state for He 
ions in H2, N2> and Ar.
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(1) The ratios SHe/SH are not independent of as was also found by Sautter 
and Zimmermann (1965). Thus it is not possible, at least not for gases, in a 
simple way to scale Sn^v,^ to SH (y,£2) or vice versa.

(2) From being a constant nearly equal to four for E/amu>500 keV, SHe/SH 
decreases with decreasing velocity and approaches another constant value for 
E/amu < 50 keV, and this value depends strongly on £2. If the stopping power 
in the low energy region is written in power form as 5 = k.Ep, k and p being 
constants, the exponents p are approximately equal for hydrogen and helium 
ions in a given target material. According to the wellknown Lindhard-Scharff 
(1961) velocity-proportional stopping formula (12), the constant ratio is given by

(S„,iss^ - 27za . (31)

In Table III, the experimental ratios are compared with the L-S values for 
E/amu 50 keV. Rather good agreement is found for the lighter target ele
ments.

Table III

h2 He n2 o2 Ne Ar Kr Xe

exp. 1.53 1.75 1.95 2.15 2.35 1.75 1.65 1.88
L-S 1.53 1.65 1.88 1.90 1.93 2.02 2.09 2.12

It might be noted that our lithium stopping-power results for the same gases 
(Andersen et al. 1978) at energies 25 keV E/amu < 75 keV, give exponents/? 
which are systematically higher than 0.5 while those for helium are lower than 
0.5 (see Table IV in the next section). Thus the SLiISHe ratios are energy-de
pendent.

(3) From formula (30), the ratio SHe/SH is given by

SHe/SH = røe)2/rø)2 X LHe/LH . (32)

Since LHe/LH ~ 1 and (Z*)2 — 1 for EH > 150 keV, one would expect that 
SHeISH^(ZHeY down to E{MP/M) > 150 keV. In Fig. 23, the (5He/5H) ratios 
in H2,N2, and Ar are compared with the mean-square charge states

<r>= 2>’2xFioo (33)
i

for helium in H2, N2, and Ar obtained from equilibrium charge-state measure
ments by Pivovar et al. (1961). Fix denotes the equilibrium charge-state fraction 
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of the beam in charge state i. A discrepancy of the order of 10% is revealed for 
E/amu < 375 keV.

It is concluded that at the one percent level the helium stopping powers, at 
least for gases, are inconsistent with Eq. (30) with (>^i*)2 equal to the mean
square charge state measured directly, and the present results support the theo
retical reservation against Eq. (30). The parameter (<)i*)2 is no more than a 
scaling parameter which, on the other hand, appears to be useful for a predic
tion of unmeasured heavy-ion stopping powers with a required accuracy in the 
15 percent range.

Concerning the ratios SHe/SH, it should be emphasized that the SHe and SH 
results were measured with the same setup. Therefore most of the systematic 
errors cancel, and this results in rather accurate ratios with 2cr ~2.8%. Many 
authors have extracted SHe/SH ratios by comparing SHe and SH measured by 
different groups. In this case, two sets of systematic errors are superimposed.

E. Velocity-proportional region.
For v < êb<u/3> it has been demonstrated experimentally (see, e.g., Hvelplund 
and Fastrup (1968) and Hvelplund (1971)) that as a function of and £2, the 
electronic stopping exhibits oscillations around the smooth curve given by Eq. 
(12). These oscillations may be understood in terms of the Lindhard-Scharff 
picture. The stopping power is proportional to the transport cross section for 
electrons scattered by a screened LJ potential around the ion, and this cross 
section exhibits oscillations similar to the one responsible for the Ramsauer- 
Townsend effect encountered in the scattering of low energy electrons by atoms 
(Lindhard and Finnemann (1968)). Since the £ oscillations damp out at in
creasing energies, deviations from the £1/2 dependence of are expected, and 
experimental electronic-stopping cross sections are usually fitted to the con
venient form Se — kx EP, where k and p are constants. In Table IV, the present 
SHe results for the energy interval of 100-350 keV are presented in this form. 
(With E expressed in keV, the resulting stopping cross sections are obtained 
in units of 10-15 eV cm2/atom.)

Table IV
Se = kEP h2 He n2 o2 Ne Ar Kr Xe

k 1.45 1.86 5.46 5.59 3.72 6.85 5.12 7.28
P 0.37 0.36 0.35 0.34 0.39 0.41 0.48 0.49
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From Fig. 16, the argon data of Weyl (1953) for 150 EHe< 300 keV are 
observed to be in perfect agreement with the present results. The energy de
pendence of the argon and N2 data of Ormrod (1968) for 10 ± EHe^ 100 keV 
deviates from that of the present data. It has, however, also been observed in 
previous experiments that the exponent p may depend rather strongly on the 
energy interval.

§6. Conclusion
Stopping powers for hydrogen ions in the energy region 40 keV to 1 MeV 

and helium ions of 100 keV to 2.4 MeV have been measured in H2, He, N2, 
O2, CO2, Ne, Ar, Kr, and Xe with an accuracy of ±2.5% (2cr). While the 
hydrogen-stopping powers show good agreement with most other published 
data and with Andersen and Ziegler’s empirical stopping-power tabulations, 
the helium-stopping powers are systematically lower than those of the Baylor 
group by 1-6%. Higher-order effects greatly influence the evaluation of 
shell corrections. With these effects taken into account, the empirical shell cor
rections, extracted from the experimental proton stopping-power data, are in 
good agreement with Bonderup’s theoretical calculations, based on the Lind- 
hard-Scharff model, at energies as low as 0.1 ± EH < 1 MeV. Experimental I 
values are extracted and are in satisfactory agreement with those given by 
Andersen and Ziegler. £3 correction terms to the Bethe formula have been 
deduced from the experimental data, and within the accuracy of the experi
ment, they agree with Lindhard’s and Esbensen’s value. From a comparison of 
the stopping powers for helium and hydrogen ions at the same velocity, it has 
been shown that SHe/SH for 1.25 < v/v0 < 5 depends strongly on ^2 and deviates 
significantly from the mean-square charge states <^2 obtained direct
ly in equilibrium charge-state measurements.
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Synopsis
The basis elements and the perturbed motion of the periodic comets Halley and Olbers during 
their two preceding revolutions and the present one have been computed; ephemerides for their 
coming return are derived. A non-gravitational effect has been taken into account, and it is shown 
that in addition to this the comets have been perturbed by other, unknown forces.
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I. Introduction

The problem of the origin of non-gravitational forces and their influence on the 
motion of comets might be solved by orbits computed in strict accordance with 
the law of gravitation for periodic comets with longer periods, 60 to 76 years, 
because these comets remain near the Sun only for a short time compared with 
the length of their revolution, so that a non-gravitational effect near the Sun can 
be estamated after a long period of accumulation.

On the other hand, if there is an effect originating in an unknown mass far 
from the Sun, this might be recognized as a slowly perturbation in the varying 
elements of long periodic comets, which coulrd hardly be realized in the case of 
short periodic comets moving nearer to the Sun.

Among the 67 periodic comets known for more than one revolution, only 5 
have orbits of this dimension, and only 3 of them, comet Hallay and the periodic 
comets Pons-Brooks and Olbers, have been observed sufficiently for accurate 
orbit determination.

The orbit of comet Halley has been investigated by several independant 
computers, while for comet Pons-Brooks there is no definitive computation. The 
orbit of periodic comet Olbers has been investigated by Besseld) and Ginzel<2) 
but only for the first revolution. A repetition of Ginzel’s computation including 
the second revolution has been carried out by myself and published in two 
papers^3). The second of these investigations reproduces the time of perihelion 
1818, 1887 and 1956 fairly well, provided the mass ofjupiter is given a correction 
og —0.34 per cent. It is also shown that just the same correction to the Jupiter 
mass will bring the orbit of comet Halley computed by Cowell and Crommelind) 
into accordance with the recognized time of perihelion in 1759, 1835 and 1910.

However, this correction to the mass of jupiter can not be accepted. But then 
the elements drived for comet Olbers, and the semi-major axis in particular, are 
not correct and must be improved using the usual mass ofjupiter. This will be 
done in the present paper, which also includes the predicted ephemeris for the 
next return in 2023-2024.

The salient point of the investigation is the fact, that residuals in positions at 
the apparitions before and after those returns, which are used to fix the orbit 
orientation, might indicate that forces not originating in the Sun and the 9 planets 
must perturb the orbit, provided the residuals can not be eliminated by changing 
the comet’s length in the orbit. This is because a Solar pressure would push in 
the direction of the radius vector and could not change the inclination of the 
comet’s orbit.
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II. Comet Halley

The present orbit computation for comet Halley is based on Bobone’s alements 
and his normal places for the 1910 return*5) and on the normal places for the pre
ceding return in 1835 given by Westphalen(6). Both sets are reduced to the equinox 
of 1950.0 and are given in Tables 1 and 2 together with the geocentric distances 
T of the comet and the corresponding Solar coordinates interpolated from Her- 
get’s table(7).

The improvement of the elements for 1910 is done by runs of integrations 
back to 1835 where the integrated time of perihelion for 1835 was compared 
with Westphalen’s T. The improvement of the semi-major axis in 1910 has been 
done provisionally by the integral:

da k
3-t a/ö

( T integrated — T Westphalen)

da has been multiplied with each of the coefficients for this element in the 
equations of condition for 1910, and the products subtracted from the residuals 
on the right hand side. Then a least square solution repeated twice leads to the 
preliminar elements IV (Table 5).

Among several repeated integrations and solutions by least squares using the 
equations of condition for both apparitions the elements Va were chosen as basis 
for further computations. In this solution the inapplicable coefficients to dT for 
1910 in the equations for 1835 have been ignored. A correction of the elements 
Va by least squares using the residuals from the 1910 return only but without 
any further correction of the semi-major axis gives the elements Vb. Both sets of 
elements are shown in Table 5.

Both orbits were integrated back to 1759 and forwards to 1986. The resulting 
elements, coordinates, velocities and perturbations are shown in Tables 5, 9, 10 
and are almost identical for the two orbits. The residuals to the normal places 
are given in Tables 8. The residuals 14 to 20 in 1835 apparently are somewhat 
large, but only because here the comet’s geocentric distances, shown in Table 2 
are less than 0.25 A.U. As a further check the elements for J.E.D. 2391500.5 in 
1835, derived from integration Vb were improved by the residuals and equations 
of condition only for 1835. But here the value of the semi-major axis of integration 
Vb in 1835 was adopted. The resulting elements Vc are shown in Table 5 and the 
final residuals for 1835 are seen in Table 8. The latter are smaller than those 
of Va and Vb, and much like Westphalen’s residuals, which in his paper are given 
with opposite sign as c-o. However, the integration back to 1759 for these elements 
gives practically the same result asVa and Vb, and is not published.
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A few words should be said about the equations of condition given in Tables 3 
and 4. The method described by Stracke<8> has been chosen even if it requires 
the use of the equatorial values of the elements co, Q, z. The method, however, 
has certain advantages. When a comet moves fast near its perihelion in an ex
tremely eccentric orbit, the differential coefficients expressed in the polar co
ordinate system are less sensitive for second order errors than the vector coeffi
cients in the Cartesian system. Moreover, if arranged in Cracowian matrixes, 
Stracke’s method is quite as simple as those described by Banachiewicz and 
Herget. In the least squares solution the weights given by Bobone have been 
slightly altered. So the numbers 16 to 19 have got their weights reduced to half 
the value, because at this time the distance of the comet from the Earth is less 
than half a unit. This fact, together with the elongation distance from the Sun, 
produces phase angles, which give some systematic errors in the observations.

The perturbed motion of the comet has been computed by Cowell’s method, 
arranged in a suitable programme for simultaneous electronic integration of the 
coordinates of the comet orbits Va and Vb and 9 major planets, done by Ole 
Møller at the Aarhus University. The basis coordinates and velocities for the 
comet and planets are given in Table 12. The latter are derived by integration 
in the barycentre Si from the values given by Schubarth and Stumpff<9). The 
coordinates and velocities for Mercury are derived from Duncombe’s table(10)_ 
The planetary masses are those given by Clemence(11).

As comet Halley approaches Mercury in 1835 and 1910, the perturbation 
from this planet has been accurately taken into account in the region of perihelion 
by using half a day step integration. But the long run through the outer orbit has 
been calculated by neglecting the direct integration of Mercury’s motion and 
attraction on the comet, the Sun and the planets. Instead the mass of Mercury 
has been added to that of the Sun. This requires that, on the dates of change over, 
the coordinates and velocities of all the bodies get a reduction from the helio
centric origo So to the barycentric Si and vice versa<12) by:

, /ix dr\ . .
c/r = —wm : (lT^h) -77 =----- 77 : ( 1 + mi)at at

Then the integration step can be increased to 4 days, and the total number of 
integrations for each of the 11 bodies is reduced to about 22000.
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III. The Effect of Non-Gravitational Forces on Comet Halley

In Table 9 are given the osculating elements at different epochs within the in
tegrated periods, and here the elements Va and Vb in columns I and 2 show that 
the integrated time of perihelion in 1759 is T = J.D. 2363588.25. However, the 
elements derived by Rosenberger from observations of that apparition give the 
periheliontime T = J.D. 2363592.55 which is 4<.l30 later than the integration 
shows. This means that the elements of 1835 must have their osculating period 
diminished by 4'.*30 in order to reproduce the observations of 1759. But in that 
case a further forward integration from 1835 with the same reduced period and 
the corresponding semi-major axis will show an integrated T in 1910 to be the 
same 4'130 too early, i.e. the increase of the period has been confirmed.

If this phenomenon should be a result of the Solar effect on the comet, it will 
not be correct to consider it a constant daily increase in the semi-major axis; 
this action must have reached its climax in the days near the time of perihelion. 
Now the basis elements of the 1910 return osculate 193 days before the perihelion 
date. Then the radius vector was 3.1 unit or 5.3 times the perihelion distance of 
the comet orbit. Therefore a Solar effect on the comet was reduced to 1:28. We 
may take it that a Solar effect on the comet has insignificant influence before that 
day, and that the integrated motion back to 1835 is almost in accordance with 
the law of gravitation. At the perihelion in 1835, of course, the Sun will also 
push the comet and give the non-gravitational delay of 4‘?30 in 1759. It is impor
tant to keep in mind that by the backwards integration the effect acts with oppo
site sign.

During the perihelion passage in 1910 comet Halley gets a similar push by 
the Solar effect which will increase the period and delay the time of perihelion 
at the next return in 1986. This effect I have tried to take into account in the 
following way. At J.D. 2418980.5, which is 199 days after T in 1910, the radius 
vector reaches 3.2 and presumably the Solar effect again has terminated. On 
this day the osculating elements Va and Vb shown in Table 6 have been derived 
from the integrated coordinates and velocities. By means of the residuals from 
Table 8 and the correction d period = 4d —> da = 0.001721500 the equa
tions of condition for the 1910 return have been solved again. The resulting 
corrections lead to the elements Via and VIb. These elements, too, are shown in 
Table 6, and they are used as basis for a further integration forwards to 1986.

On the days around the expected day of perihelion in 1986 the elements are 
derived from the integrations of all 4 orbits. They are arranged in Table 10, 
where 4 columns give the different systems of osculating elements. The differences 
Via minus Va are given as the variation corresponding to the resulting 3'.*9585 
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delay in arriving to the perihelion in 1986. The differences of the variations in e 
and a show how sensitive the perturbation on these elements are. In Table 11 is 
given the predicted ephemeris for the coming return computed from the inte
grated coordinates of orbit Va, while the orbit Via has been used to compute 
the variation in the positions due to 3C.*95852 delay in the period. Also the star 
aberration is given in the ephemeris; it must be added to the geocentric observa
tion before this is compared with the epehemeris position interpolated to 
t- 0.00577 Q.

By means of the variation given in Tables 10 and 11 we can correct the 
elements and the ephemeris as soon as the comet has been observed.

Delay = 3.95852 • residual : variation
Correction = variation • delay : 3.95852

The existence of perturbations not originating in a radial pressure from the 
Sun can be proved if the corrected elements can not reproduce the new observa
tions.

No attempt has been made to compute the residuals between the integrated 
orbits and the observations of 1759. But there is an easier way to show the missing 
perturbations in the integrated orbits.

The elements derived by Rosenberger from the 1759 observations, when 
reduced to the equinox 1950.0 and supplied with perturbations from 2363592.5 
to 2363680.5 are compared with the integrated elements Vb Table 9 column 2, 
which originate in the 1910 apparition. The differences show the missing pertur-
bations especially in Q and z.

Vb
1759

Correction to 
Integration

Rosenberger
1759

Epoch 2363680.5 2363680.5
T 2363592.55055 2363588.24892 4230163

(JO 11027390 110Î6878 0Ï0512
Q 56.5739 56.5280 0.0459
i 162.3980 162.3705 0.0275

? 0.5845238 0.5844825 0.0000413
e 0.9676585 0.9676633 -0.0000048
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IV. Periodic Comet Olbers
In my previous investigation the elements for the 1887 return were in accordance 
with the time of perihelion in 1815, 1887 and 1956 provided the mass of Jupiter, 
used in the integration, gets the correction —0.34 per cent. But the residuals were 
not confirmed by means of continuous integration. The elements for 1956 were 
corrected assuming that the variation of the integrated period and the osculating 
semi-major axis in 1956 are both linear functions of the correction to the Jupiter 
mass. But only the first conclusion is true, therefore the elements for 1956 need 
a further correction based on the unchanged value for the mass of Jupiter. This 
correction has been made by means of least squares improvement with the re
siduals from the 1956 apparition combined with runs of integration from 1956 to 
1887. The resulting elements of the final improvement are shown in Table 13 
which also includes the integration back to 1815 and forwards to the next return 
in 2024.

In Table 14 are shown the normal places for all three apparitions and the per
turbations from the epoch of osculation for the elements together with the resi
duals of the comparison with the normal places. These residuals are quite satis
factory in 1956 but a bit systematic in 1887 corresponding to a variation of p.004 
in the denominator of the reciprocal mass ofjupiter used in the integration, which 
is due to the close approach of the comet to this planet in 1889.

For 1815 the time of perihelion has been corrected by 5^49562 in the compar
ison with the normal places.

The predicted ephemeris for the next return in 2023-2024 is given in Table 
15 together with the variation in the positions corresponding to an arrival 5 
days later.

As in the case of comet Halley we can deduce the remaining perturbation by 
comparing the integrated elements 1815 Vila in Table 13 with the elements 
computed by Ginzel(12) from the 1815 observations, when these last elements are 
integrated forwards to the same epoch as Vila.

Ginzel Vila Correction to
1815 1815 Integration

Epoch 2384250.5 2384250.5
T 2384089.98880 2384084.48910 5d49970
tn 65T57832 65757331 O7OO5O1
Q 85.34303 85.33798 0.00505
i 44.49993 44.49916 0.00077

7 1.2127846 1.2128258 -0.0000412
e 0.9310991 0.9316803 -0.0005812

(13)
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V. Conclusion
The comparison of elements integrated from the basis apparitions with elements 
for the apparitions 1759 and 1815 discloses perturbations not originating in a 
Solar effect, because this can not alter the elements Q and i. Most likely these 
unidentified perturbations originate in attractions from unknown masses far 
from the Sun or in pressure produced by streams of captured interstellar dust 
near the Sun. In the last case no constant effect in Q and i could be expected.

An investigation by Yeomans(14), which includes a non-gravitational term in 
the direction of the radius vector of comet Halley represents the perihelion date 
back to the apparition in 1607, and also shows that no transverse non-gravitational 
reduction is required, unless the 1909-1911 observations are included in the 
solution, and prior to the 1910 return there does not appear to be a time depend
ence in the transverse non-gravitational accelerations for nearly a millennium.

The computers who in the future adjust the elements of these comets by 
means of the coming observations, will find out whether a similar discrepancy 
will appear between their improved elements and the elements predicted in this 
paper.

In this connection it is emphasized that after the 1986 apparition of comet 
Halley the comet will have been very well observed during three consecutive 
apparitions.
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Synopsis
An attempt is made to formulate a statistical theory of particle penetration phenomena in real, 
i.e. nonrandom stopping media. The treatment concentrates on individual collision events that are 
well localized in space, but correlated via the trajectory of the penetrating particle. Since Poisson 
statistics does not govern a sequence of collision events in an ordered structure, the mean-free- 
path concept fails, and penetration theory has to be developed from the bottom. As it turns out, the 
cross section keeps to be the leading concept when defined as an atomic parameter without recourse 
to the mean free path. However, a sequence of competing correlation terms occurs which do not 
influence the average behavior of the beam but enter fluctuations and higher-order averages. These 
correlation terms depend on the structure of the stopping medium. The leading one contains the 
pair correlation function of the structure, and can be expressed in terms of the structure factor as 
measured in x-ray or neutron diffraction.

As a main result, one obtains an extension of Bothe’s formula—which governs the statistics 
of particle penetration through thin layers—to ordered matter. The more specific discussion refers 
to energy loss and multiple scattering of heavy charged particles, as well as inner-shell processes, 
in ideal molecular gases, real gases, and amorphous solids or liquids. Previous results derived for 
the energy loss and multiple scattering of ions in molecular gases are contained in the present 
description. In that work it has already been documented that correlation effects may become 
pronounced when the cross sections are large. The present work shows that correlations may be 
positive or negative, dependent on whether the attractive or repulsive interaction between target 
particles dominates in the range of impact parameters governing the collision events in question.
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1. Introduction

In studies of the interaction of particles with matter, it is convenient to distinguish 
between collision and penetration phenomena. Collisions are distinct events on 
a microscopic level, such as the excitation of an electron by an alpha particle 
or the dissociation of a molecule by a photon. Penetration phenomena may be 
observed on a larger scale, under conditions where the chance for one particle 
to undergo several collisions is appreciable. Typical examples of penetration 
phenomena are the stopping and multiple scattering of charged particles in 
dense matter, and various ionization phenomena.

From an experimental point of view, the transition between collision and 
penetration phenomena is gradual. Collision phenomena are investigated by 
means of thin targets to ensure single events. The requirements to be imposed 
on a target in order to be called “thin” depend on the desired accuracy of ex
perimental results. Even in a dilute gas target, there is a non-zero probability 
for more than one collision in an individual passage.

From a theoretical point of view, one may consider collision events to be 
governed by the appropriate equations of motion, such as Schrodinger’s equa
tion, while statistical considerations are essential in the treatment of penetration 
phenomena.

The statistical theory of particle penetration was developed early in this 
century1-4. This theory is generally based on the assumption of statistical in
dependence of different collision events. Therefore, quantitative predictions 
originate in Poisson’s distribution, Boltzmann’s equation, or equivalent first 
principles.

According to standard penetration theory5, the probability P for a projec
tile to initiate a certain event while penetrating a small path length Ax is

P = A Axa, ( 1)

where JV is the number of target particles (atoms, molecules, electrons, etc) per 
volume, and a the cross section for the event in question. A necessary condition 
for sucessive events to be statistically independent is the possibility to make Ax 
small enough so that P « 1. A lower limit of Ax is set by the duration of a col
lision. For an order-of-magnitude estimate, take an interaction radius a, and 
set Ax 2«, er ~7iö2, and JV ~ (3/4ti) (2/</)3, where d is a mean interparticle 
spacing in the target. Then, successive collisions can be statistically independent 
only if

P ~ 12(«/^)3<s= 1 ; (2)
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For processes on an atomic scale, this condition is easily fulfilled when the target 
is a gas. In solid or other dense media, eq. (2) is obeyed for processes on a nuclear 
scale, while for atomic processes, it is more or less violated except for very rare 
events.

Once eq. (2) is not fulfilled, the concept of a free flight path becomes mean
ingless, and hence Poisson statistics does not readily apply. Conversely, the very 
fact of an appreciable probability for a projectile to interact with every target 
particle along its path suggests an influence of target structure on the statistics 
of collision processes. Another important consequence is the possibility of collec
tive processes that has been pointed out long ago6 '.

The present paper deals with the statistics of penetration phenomena in 
situations where the basic collision events are well-localized but not statisti
cally independent. There is a wide range of penetration phenomena — in partic
ular in solid targets—where correlations between individual collision events 
are nonncgligible but not dominating. In the opposite case of strong correlation, 
a redefinition of the basic collision event may be possible such as to make cor
relations weak. An attempt is made in this work to provide a description that 
is flexible enough to allow for both spatial and other types of correlations.

The relation between such a treatment and conventional penetration theory 
is similar in several ways to that between the kinetic theory of real and ideal 
gases, and some of the statistical methods applied here are indeed common in 
gas theory.

Despite the desired flexibility, the guiding principles have been chosen to 
aim at a treatment of heavy-charged-particle penetration phenomena, where 
the importance of correlation effects has been documented recently8-12.

At present, the treatment has been limited to the case of negligible feed
back of collisions on the motion of the projectile particle. This implies small 
energy loss and deflection and, more important, neglect of possible changes of 
projectile state during penetration. A more general treatment incorporating 
the latter class of phenomena is in preparation13.

In sects. 2 & 3, general expressions are derived for the frequency spectrum 
of individual collision events and the cumulative effect of collisions in the pre
sence of correlations. The main result of this treatment is a generalization of 
Bothe’s formula2' to correlated systems. In sections 4 and 5, spatial correlations 
are considered by means of an impact-parameter treatment of individual colli
sions. In section 6, comments will be made on how to select suitable statistical 
variables, and in section 7, various methods of evaluating cumulative effects 
are extended to correlated systems. Finally, section 8 contains more explicit 
results for energy loss and multiple scattering. In particular, this section provides 
the link between the general considerations made in the present work and the 
more special situations treated earlier9’10,12.
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2. Statics of a Single Type of Event

Take a target with a number of independent degrees of freedom, or modes of 
excitation, and consider a specific event, called A in the following. As an ex
ample, take a solid target, and denote by A the process of A-shell excitation in any 
of the constituent atoms of the solid which may be assumed monoatomic for 
the moment.

Let a projectile interact with the target, but disregard all action of the target 
on the projectile. Within the above example, take an energetic ion moving on 
a straight line through the solid with negligible energy loss, and disregard elec
tron capture and loss as well as excitation and deexcitation of the ion.

In the following, it will be convenient to speak of an “ion” and “target 
atoms” as well as the “passage” of an ion, even though the projectile need not 
be an ion and the target particles might be electrons, nucleons, molecules, 
plasmons, phonons, etc. It will, however, be assumed that the target has mac
roscopic dimensions, i.e., that the number of target atoms is large.

Even though we deal with independent modes of excitation in the target, 
there may exist a more or less pronounced correlation of events A in any individual 
passage. Within the above example, only those atoms have nonzero probability 
for A-shell excitation that are located within some microscopically small dis
tance from the trajectory of the ion. Thus, excitation processes in different target 
atoms are correlated via the trajectory of the ion.

Suppose there are z different ways of initiating event A, i.e. z different tar
get atoms. Let P, (i = 1, ... z) be the probability for initiating A in the z-th atom 
in a particular passage. Then, the probability Fn for n events A in that passage 
is given by

s n (1-P;) ; n^Q,\,...z; (3)

each term in the sum representing the probability for event A to occur in a given 
selection of n atoms, and not to occur in the remaining (z-n) atoms. The sum 
includes all („) different selections of n atoms.

The Fn are readily seen to be the coefficients of a power series expansion of 
the generating function (or partition function)

/« = fl(l-^+^.) = É V H)
i = l n= 0

where t is a dimensionless variable with no physical significance at this point. 
From (4) one obtains

/(1) = 1= t F„,
n =0

(5a)
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i.e., the individual probabilities add up to 1. Moreover, taking derivatives one 
obtains average values,

Z(I) = ; (5b)
n i

f’W=l,i(n-l')Fn=Y,P,Pr. (5c)
n j

etc. This results in the Taylor series

/« = 1 + (J -1 ) S +1 (i -1 )z Z ■ (6)
i j

Consider now the average Fn over many different passages, i.e. the frequency 
spectrum for event A when a macroscopic beam of projectiles interacts with 
the target.

Let us make the important assumption at this stage that the beam is homo
geneous, i.e. equal a priori probability P per beam particle to undergo event 
A for all target atoms,

p. = p fOri= 1,...£ (7)

Eq. (7) requires that no target atoms are “shadowed” systematically by 
others. The relation is readily fulfilled in case of an ion beam spread uniformly 
over a macroscopic target area, since it has already been assumed that individual 
trajectories are not governed by target structure, and that energy loss and scat
tering are inappreciable. An example of a situation where (7) is not generally 
fulfilled is that of an internal source of projectiles, e.g. from radioactive decay12, 
and, especially, channeling phenomena in crystals14.

In case of a homogeneous beam, (5b) and (7) yield11

" = YnFn = = ZP ; (8)
n i

Similarly, from (5c),

T?-«2 = ZP{\ -T) + S Qàj (9)
I#: j

where

(9a)
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Obviously, Qdj is a measure of the correlation between the events initiated in 
two given atoms i and j.

Let us now make use of the assumption that z is a large number, i.e., that 
we deal with a macroscopic target. With target thickness x and target (or beam) 
area S, we have

Z — NSx, (10)

so z can be made as large as desired by a mere increase of 5'. So long as the pro
jectiles interact over a microscopic distance, this does not affect the essential 
physical properties of the system. (We keep in mind that bounds exist on the 
target thickness x because of the requirement of negligible beam attenuation).

By definition of P, we must have

(H)

where cr is the cross section for event A. Obviously, P is a very small quantity, 
unlike the statistical variables Pt which may take on values between 0 and 1.

From .(8), (10), and (11), one obtains the standard prescription for deter
mining cross sections5,

n = J\/x(7 ; (12)

Note, however, that n need not be small in order that (12) be valid, nor has it 
been assumed that collision events be statistically independent.

Consider now the fluctuation, eq. (9), in case of a macroscopic target. We 
have zP^—P) = zP, since P<<1. The correlation coefficients differ from 
zero only if atoms i and j lie within some welldefined microscopic volume. 
Hence, if the target area S is made very large, only one summation in the double 
sum extends over all atoms while the other is limited. In other words, the double 
sum increases as ce z rather than cc £2, so we can write

~PP-rP =^(P+AP2) (13)
with

A/>2=1 S ft, , (13a)

and A/2 being finite for £ —> oo .
Consider now the beam average over the partition function (6),
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After insertion of (12) and (13) one finds

or, rearranging according to powers of 

(15)

This results in Poisson's distribution1 5

— Nxa 

(16)

where

for

for the frequency spectrum of an individual event A governed by a cross sec
tion (7.

It is tempting to generalize eq. (15) in accordance with ( 14"), he. to write

where the dots indicate terms containing correlations.
It is evident (and well-known15) that in the absence of correlations, J\s) 

becomes exponential,

an

» = i4(5-imi(t-i)2[(^)24Mf2]+...

The proof is central. It is carried out, therefore, in some detail.
Write the beam average of eq. (6) in the form

/(■’) = È
n =0

1 n = 0
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Introducing correlation coefficients

with

bn = Z Q, ri>\
if£ ..at i„

-^•••(^ -p)

(19)

(20)

we find the following identities,

an — bn — È + ..\z-n^-\)Pman^m
m = 1

S È for 1 < ncz;
m = 1

From this follows

û«= È (m^n-m(zP)m
m - 0

(21)

with £0=l. Insertion of (21) into (18), and rearrangement of summations 
yields

(22)

Errors in (22) arise from those terms where n becomes comparable with z- (Note 
that z °c S while Z'P is independent of 5).

Consider first the case where all Pt are uncorrelated. Then, bn = 0 for n > 1, 
and (22) becomes identical with eq. (15).

Consider next the case of pair correlations only, which may be realized by 
a diatomic molecular gas. Then, higher-order correlations are nonzero only 
to the extent that they can be decomposed into pair correlations. By means 
of simple combinatorics, (19) yields

b2m = (2m — 1) (2m — 3) ...3-1 (b2)m

-1 = 0
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for m — 1,2... . Therefore,

With this, and (13a) and (19), (22) becomes identical with (17).
In case where both second and third order correlations are present, while 

higher correlations decompose, one finds

K = 3(^2)2 ;
b5 = 10b2b3 ; 
/>6=15(V + 20(/>3)2;
A, = 105(Vi3 ; 
etc.

so

2)^(5- l)n = +
0 n •

Similarly, in case of higher correlations, one may write

(23)

where

(24)

and the index (z) indicates that only irreducible zz-th order correlations are to 
be included in the sum.

In the above treatment, z was essentially considered infinite. This requires 
the functional behavior of/($) to be determined by a number of terms in 
the Taylor series (18) with zz0 z- If is restricted to the range |j| < 1, and the 
APn bounded according to |APn| < P, one must require that the relation 

be obeyed for all zz > zz0 with some value zz0 << z- By means of Stirling’s formula 
and eq. (12), this becomes equivalent with



40:5 H

(25)

where = 2.718. By comparison with eqs. (1) and (2) one finds that (25) is 
a rather weak requirement.

In most applications of the present treatment, only pair correlations are 
important, i.e. all APn for n > 3 can be ignored. In that case, j\s) according 
to (23) reduces to a generating function for Hermite polynomials16. By term- 
by-term comparison with (14) one finds

r=rt(f-^2) [4P-ÄPJ2)]"-2- (26)

This is a generalization of Poisson’s formula (16) to systems with pair correlation. 
In subsequent applications, the partition function f(s) itself will actually 

become more useful than the frequency spectrum Fn .

3. Cumulative Effect of a Multitude of Events

Consider now two mutually exclusive events A1 and d2 such that one ion can 
initiate Ax or T2 in a given target atom, or none but not both. Let Ptl and Pi2 be 
the respective probabilities (z = 1,...^), and let be the joint frequency 
spectrum for nY events A1 and n2 events A2 in an individual passage. This quan
tity follows readily from the partition function

/(^2)= S F,..,«, (27)
i = 1 0<n1 + n2<i

where and s2 are independent dimensionless variables. Eq. (27) is a straight 
generalization of eq. (4).

Taylor expansion of (27) similar to (6) yields

/U,^) = 1+S^-1)S7’,.+IS(S<I-1)(^-1) (28)
a i aß j 
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or, by analogy with (17) or (23),

/(b ^2) = exp4£ta-l)^a+iS (ja-l)(j<J-l)âP2-a/J + ...} (29)
a aß

where
(29a)

(P^-PMP^-Pe} (29b)
< i y: j

etc., and a,ß — 1,2.
Consider now some cumulative effect U,

U=nxux+nzuz = ^naua ,
a

where ua is the contribution of an individual event of type Aa to LA Then, the 
probability density G(L7) is given by

G(U)= S F.... !>(.U-T,naua)
»i>»« a

or, after Fourier transformation,

(30)

Comparison with (27) shows that the integrand can be expressed by means of 
the partition function f{sx, 52). Hence,

or, after insertion of (28),

with

G(Z7)=-U dteau~^
2 71J -00

(31)

A = S(l-e--.)Pa-iS(l-<'“-)(l-«-"--)4/)2^a+-... 
a aß

(32)
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The notation has been chosen so that eq. (32) remains true for any number 
of events Aa, a = 1,2,3,... Moreover, if a is a continuous variable, the quan
tities Pa,AP2 a0 go over into corresponding probability densities and correlation 
functions. Finally, if ua (and U) is a vectorial rather than a scalar quantity, 
eqs. (31) and (32) have to be read correspondingly, with t being a vector vari
able, too.

In the absence of correlations, (31) reduces to Bothe’s formula2

(33)

which is the conventional starting point for the theory of small-angle multiple 
scattering2,12 and energy-loss spectra4, when specified suitably. Standard deri
vations4,17 of eq. (33) are based on Boltzmann’s equation.

For completeness one may wish to generalize eq. (32) to the case of a poly
atomic target. Let there be qz) atoms of species I (= 1,2,...), and allow each 
species to undergo a set of events J(/)ct with a = 1,2,... Then, eq. (32) amplifies 
to

4 = 2^,
i

E S (1 -(1 (34)
i, j d, 0

where P {1}a is the probability per beam particle to initiate an event T(/)a in 
a given target atom of type I, i.e.

p
lot

__ aa la (35)

and <j(/)a the respective cross section. c(/) is the concentration of species I,

(36)

and z/(1)a the contribution of one event T(/)a to the cumulative effect U. Finally,

AP2(IJ )a0 —
Ztf je J

(37)

where the prime indicates omission of the term i # j (for I = J).
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4. Spatial Correlation. Impact Parameter Treatment

In this section, correlations will be evaluated for the case where the target 
particles (preferably atoms or molecules) can be taken as well localized in space 
for a certain amount of time, and where the essential parameter determining 
the collision events is the initial location of a target particle relative to the 
trajectory of a beam particle.

Let p be the vectorial impact parameter with respect to some specified 
point 0 within the target particle, e.g. the nucleus of an atom or the center-of- 
mass of a molecule. If the probability to initiate an event A in a given target 
particle depends on p only, we have

a = \p(p)d2p (38)

according to (11). If P(p} is essentially different from zero only for p covering 
some microscopic area << .S’, the integration in (38) can in practice be extended 
over the entire p-plane.

Consider now the correlation coefficient Q^, eq. (9a) for two target particles 
i and j, located in ri=(xi gf) and = (jq jq), respectively. Here, the x-axis is 
parallel to the trajectory, and Qt and are two-dimensional vectors specifying 
lateral positions. Let the trajectory have the lateral coordinate q.

Introducing Fourier transforms

we can write

<y(k) = \d2pP(jp)e,kp-
s

p(p)

(38a)

(38b)

P-P= P^~e.)-P = -^ (39)Ô k

where the prime indicates ommission of the term k = 0. Then, averaging over 
the beam yields

(40)
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Similarly, the higher correlation coefficients, eq. (20), read

m = 1

Mt.)

where ök,k' is Kronecker’s symbol. 
From (13a) and (40) we obtain the leading correlation term in eq. (17),

|o’(å:)|2 elk(e> e<) > ;■J * (41)

Here, the sum over individual target particles has been put into brackets that 
symbolize their distribution. Indeed, in an experiment, projectiles hit the tar
get at different times. Therefore, a time average is taken over the set of instan
taneous positions {r, ,... rz}.

As it stands, eq. (41) implies that all motion of target atoms during the time 
interval of an individual passage can be ignored. In practice, target motion is 
required only to be inappreciable for the amount of time needed by the pro
jectile to penetrate the correlation volume, i.e., the volume within which atomic 
positions are strongly correlated. In the absence of long-range order, this does 
not mean a severe restriction even for only moderately fast projectiles. (Other
wise time-dependent correlations have to be introduced18). Systems with long- 
range order such as crystals need special care for a different reason (cf. below).

The quantity in brackets in eq. (41) is quite closely related to the structure 
factor that is measured in conventional diffraction experiments. Indeed, take a 
situation where the target thickness x is much larger than the range of the cor
relation of the structure in question, i.e., disregard surface effects. By means of 
the pair distribution19 g2(r) —7V-g2(r)^3r is the probability to find a target 
particle in (r,rf3r) if there is one in r = 0 — we have

d^rg2(r)e iK-r _ (42)

where K = (0,Æ). With the common definition 20 of the structure factor

S(Æ)-1 = N d3r{g^r)-\)e^- (43)
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(41) reads

= A-x^jîpt|<7(fc)|2(S(fc)
1). (44)

where S(k) stands for £((0,fc)).
For third-order correlations, eqs. (24) and (41) yield

ZAP2 = JVx •(r(fc) a (£>*(* + £') • (S(k,k') - 1)

where

(45)

S (Æ, K') - 1 = JV2 p3rr d3r'e‘K' 'r'- [&(r ;r') - 1 ], (45a)

and JV2£3(r\r'}(Pr(Pr' is probability to find atoms in (r,</3r) and (r',d3r'} if 
there is one in r — 0. Higher-order correlations form correspondingly.

These results are readily generalized to the multitude of events discussed in 
the foregoing section. By comparison with (9a) and (13a) we find instead of (44)

(46)

where

(46a)

and J^c(J]g2{IJ}(r)d3r is the probability to find an atom of type J in (r,</3r) if 
there is an atom of type /in r = 0.

Formal evaluation of eq. (42) for an ideal crystal yields

S t‘K <'•-,> = (47)
i*j Q.

where Q runs over the reciprocal lattice21 of the structure in question. Con
sequently, one would find from (41)

(47') 
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where Q= (0,ç). Thus, long-range order causes an x2-dependence of Z'AP2 on 
target thickness which is essentially different from what was found in eq. (45). 
At the same time, the validity of the various assumptions entering (47z) is by 
no means proven. Indeed, ignoring governed motion in crystals in the discus
sion of the effects of long-range order is hardly justified. Therefore, the follow
ing discussion will concern systems with short-range order only.

For very thin targets, surface effects become important in the structural 
correlations, so eq. (44) is no longer obvious. As an extreme example, take a 
planar layer characterized by a correlation g2(t?) —1- Then, (41) yields

(48)

where n = z/S. The only noticeable difference between (48) and (44) lies in the 
quantitative behavior of the two pair distribution functions.

It may be worthwhile to stress that the description put forward in this section 
is based on the assumption that individual events are correlated only through 
the trajectory of the projectile. In particular, the characterization of the ele
mentary event by a probability T(p), as expressed by eqs. (38) and (40), rather 
than a quantal transition amplitude ignores quantal interference between dif
ferent events. Thus, the treatment excludes coherent scattering processes (in 
the language of diffraction theory18). Also, it is implied that the basic event is 
defined in a manner so that individual interaction regions do not overlap sub
stantially.

5. Examples: Molecular Gas, Hard-Sphere Gas, 
and Amorphous Solid

A very simple case of a medium with short-range order is an ideal gas consisting 
of randomly oriented diatomic molecules. When viewed as an assembly of atoms, 
such aufcystem has pair correlations only, and the correlation function can be 
approximated by 

&(»•)-1
d(r-rf)
4ti,W/2 (49)

in the simplest case of a homonuclear molecule with individual atoms assumed 
spherically symmetric, and vibrational motion around the equilibrium distance 
d ignored. (A is the number of atoms per volume). Then, (43) and (44) yield
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and

S(Æ)-1 sin Kd
Kd

zAP2 = Kx~—
2 2nd

(49a)

(50)

Expressions of this type have been investigated previously910. A very im
portant limiting case is that of short-range interaction, where the cross section 
(38) is made up predominantly from contributions within the range p <C d. 
Setting

^(p) ~ a ■

in (38a), one obtains from (50)

(51)

(52)

It is easily shown9 10 that (52) is the leading term in an asymptotic expansion 
of (50) in terms of of 2nd2. Thus, the short-range approximation applies for 
a << 2nd2 ; this means that correlation effects are supposed not to be dominating.

It may be worthwhile to stress that correlations in the ideal molecular gas 
originate in the (deliberately taken) view of the system as an assembly of atoms. 
If, instead, the description is based on projectile-molecule collisions as the basic 
event, Poisson statistics applies. Indeed, previous derivations910 of the present 
results were found along that line which is, in fact, more direct in case of the 
molecular gas, but much less general. Thus, with regard to the present descrip
tion, the molecular gas constitutes mainly a useful test case.

As another illustrative example, consider a real gas, e.g. a noble gas with a 
hard-sphere-like repulsive interaction, so that

for r <
r > b (53)

where b is twice the hard-sphere radius. Then, (43) and (44) yield

and

S (Æ) — 1 =-----yy- (sin kb —kb cos kb )K (53a)
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(54)

In the short-range limit, (54) reads

Z&P2 ~ ~ ■ 2Nb , (55)

i.e., A A becomes negative. Unlike (52), (55) is a density-dependent correction 
to Z‘P, as is obvious from the underlying physical model.

For a more general system, eq. (44) reads in the short-range limit

MA

Let the medium be isotropic, i.e., g2(r) = ^2(r)- Then, (43) reads

£(/C)-l = N
*00

4%r2rfr(g2(r)
o

sin Kr
Kr '

so

(56)

(57)

Also this result has been derived previously for a special case12. It shows 
that in the case of short-range interaction, the sign of the correlation term 
A A is determined by the sign of the structural pair correlation function g2(r) — T 
In case of a positive correlation, like (49), A A becomes positive, cf. (52), and 
vice versa for eqs. (53) and (55).

Fig. 1. Pair Correlation for 
amorphous selenium at 
room temperature, 
measured by means of 
neutron diffraction22.
In the region 
r 2Â,gz(r) has been set 
equal to zero, while the 
function tabulated in ref. 22 
oscillates, and takes on 
negative values in certain 
intervals. (In the evaluation 
of eq. (57), however, the 
tabulated function has 
been employed).
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In a liquid or amorphous solid, the pair correlation function looks generally 
like in Fig. 1, i.e., both positive and negative values are represented. The most 
predominant effects are the repulsive interaction at small r, giving rise to a 
contribution of the type of eq. (54) or (55), and a nearest-neighbor correlation 
of the type of eq. (50) or (52). However, while in a real gas, N is so small that 
(55) is a minute correction, the high density of amorphous matter makes the 
repulsive region dominate, as is evident from the figure. For amorphous selen
ium, integration of a measured correlation function22 yields

4%A’J dr(g2(r) — 1) = — CÂ~2 ;

with*  1.3.

* The numerical value of the constant C has been determined by straight summation of the 
tabulated values of structure factor and pair correlation in ref. 22. Both procedures lead to the same 
value C~ 1.3 within their apparent accuracy of ± 20 pct. The actual error in C may be greater: 
Because of experimental limitations on the range of ^-values covered, the pair distribution g2(r) as 
deduced in ref. 22 takes on negative values in certain intervals. This unphysical behavior has not 
been corrected for in the present evaluation of C.

Thus, the resulting correlation term in the short-range limit

is very similar in magnitude but opposite in sign to the one for the diatomic 
gas, eq. (52).

It is instructive to study the behavior of eqs. (50) and (54) in case the inter
action is not of extreme short-range nature like (51). For analytic convenience, 
take the following model,

a(£) =o.e-ka (58)
corresponding to

^(p)=^^2+«2)-3/2 (58a)

according to eq. (38b). Here, a is an arbitrary interaction radius. When (58) 
is inserted into (50) and (54) one obtains

2tï(</2 4-4a2) (59a)
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for the diatomic gas, and

^AP2 --AW-2A' b — 2aarctg — (59b)

for the hard-sphere gas.
Eqs. (52) and (55) are limiting cases of (59a) and (59b) for small values of 

a, as expected. In the opposite limit of a >> b,d, one obtains, instead,

Nxa2 (60a)

for the molecular gas, and

ba
(60b)

for the hard-sphere gas.
One may recognize that AP2 decreases monotonically when a increases from 

zero to infinity, i.e., correlations are seemingly most pronounced in the limit of 
short-range interaction. In interpreting this result, the reader ought to keep 
in mind that it only holds to the extent that the cross section is kept constant. 
Most often, cr itself will increase approximately as cc a2.

It is also obvious that (59b) decreases more rapidly with increasing a than 
does (59a). Therefore, one may anticipate that in case of an amorphous medi
um, the relative significance of repulsive and attractive correlations is shifted 
in the direction of increased importance of positive correlations for long-range 
interaction. Whether or not this leads to positive values of AP2 depends on the 
details of the interaction and the structure.

The results derived so far—when suitably extended to more general situa
tions as prescribed in sect. 3 — are of immediate significance when fluctuations 
are to be determined, cf. eq. (13). Higher than pair correlations do not enter 
here. When interest ist directed toward a frequency spectrum like (26) or the 
probability density of some cumulative effect, like (31), the significance of 
higher-order correlations, dsPn for n > 3 needs to be discussed.

Let us consider the limit of short-range interaction. Insert (45a) into (45), 
and apply (51). Then,

r''(gAr ;rz)- I)d(e)d(e') (61)

where r — (x,p) and rz = (xz,pz).
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If the medium is isotropic, the correlation function ig3(r:r/) —1 is invariant 
toward rotation of the coordinate system, i.e. it can only depend on r,r', and 
\r — r'\. Therefore, the angular integrations can be carried out, and

where

. V.w • (2V)2 ^'[>3(r ;r') — 1], (62)

ä#V) = 2 [&(*v',|r-r'l) +&(*■>< r+r' )] ; (62a)

Thus, we obtain the important result that in the short-range limit, A/3 picks 
up only correlations between collinear atomic positions.

This means that in a polyatomic molecular gas, triple (and higher) cor
relations are significant only provided that are collinear atoms. The magnitude 
of these correlations has been investigated in considerable detail in the special 
case of multiple scattering off triatomic molecules6 * * * 10. These estimates will not 
be repeated here. However, comparison of eq. (62) with eq. (57) shows that 
the ratio of APJAP2 is of higher order small in terms of (j/2nd2, in addition to 
the fact that its numerical value must be small in the absence of any correlation 
that forces three or more atoms on straight lines.

6. Selection of Statistical Variables
In the two previous sections, attention was restricted to collisions between well-localized particles, 
e.g. projectile ions and target atoms. The (more or less pronounced) deviations from Poisson sta
tistics are in this case directly related with spatial correlations between target atoms. It is worth
noting that such spatial correlations only exist when the target atoms interact. Indeed, Poisson 
statistics does apply in case of an ideal gas, while deviations were found in case of molecular bind
ing, the real gas, and the amorphous solid.

This is a rather general result. Indeed, it appears that at least in case of large cross sections,
correlation effects are the rule rather than the exception in particle penetration through non-

Thus, it appears that within the range of validity of the short-range ap
proximation, i.e., so long as correlation effects are moderate, pair correlations 
are responsible for the dominant correction to Poisson statistics, and higher 
correlations can be ignored in the extended Bothe formula.

In the opposite limit of long-range interaction, such a simple picture can 
hardly be expected to be true. Indeed, collective effects, and hence higher cor
relations tend to be important in such situations. It is, therefore, advisable to 
redefine the basic event and thus to create a description where correlations are 
moderate or even weak. Such a procedure will be sketched in the following section. 
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random media. However, one has the option of selecting generalized coordinates describing the 
initiated events in a way so correlations are minimized. Rather than trying to establish general 
criteria for a wide variety of phenomena, let us consider two simple examples that illustrate this 
point.

First, take the process of A-shell excitation by an ion beam in an amorphous solid, and ask 
for the probability Gv for v target-Ä"-shell vacancies per ion.

Consider two types of correlation. First, every target atom has two Ä'-electrons, and the respec
tive excitation probabilities may be strongly correlated. Only in the limit of very-high-speed ions 
would it be feasible to treat this type of correlation within the short-range approximation. Second, 
consider the spatial correlation between different target atoms. Since, for ions with moderate velo
cities (comparable with the velocities of À-- or Z-shell electrons) cross sections for Ä"-excitation can 
become appreciable on an atomic scale23, the latter class of correlation may well be sizable. It is, 
however, weak enough to be well described by the short-range approximation. A third (and often 
important23) correlation effect associated with the projectile state is outside the scope of this paper 
and therefore ignored.

From the point of view of simplicity of the general statistical description, one might initially 
attempt to describe the system in terms of one type of target particle (Ä'-electron) and one type of 
event (Ä"-excitation). Although the two Ä'-electrons are strongly correlated, such a description may 
be feasible for high-speed ions where Poisson’s law is almost fulfilled since spatial correlations are 
negligible and binding effects small. However, at moderate velocities, in the presence of both types 
of correlation, one would have to cope with correlations of both third and fourth order. Instead, 
it is more attractive to apply the (conventional) description in terms of the atom as the basic target 
particle and two types of event, /I, and ^42, representing single and double Ä"-excitation, respective
ly. Then, eq. (31) yields

with

G _J_
'271 

dteltv-ià
0

(63)

i f Poo

(64)
° I Jo J

and

ctj + (1 — g ; (65)

Here, <q and a2 arc the cross sections for single and double excitation of the Ä-shell of an individual 
atom, and g2(r) —1 is the pair correlation characterizing the structure of the amorphous target. 
The short-range approximation has been applied to correlations between different target atoms, 
and the integration over t in (63) has been restricted to an interval size 2n, unlike in (31), in order 
to produce a probability Gr instead of a density G{v)dv.

Further evaluation of eq. (63) in case where cq and a2 are well-known parameters could be 
done by way of the procedure discussed in the subsequent section.
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Determination of the atomic parameters <jt and a2 is a problem of atomic physics that has been 
investigated in specific cases23-2“. The description of correlations in terms of impact parameters 
appears too qualitative to be applied in cases where proper quantal calculations are available, 
but may well be helpful in situations where only empirical cross sections exist. Since the present 
discussion serves to illustrate a rather specific point, this line is not followed presently.

The second example concerns the energy loss of an ion penetrating a molecular gas target. 
This problem has been treated previously as a rather simple case where correlations play a role, 
both from a particle-penetration9 and a molecular-collisions26 point of view. The present discussion 
concentrates on the question of finding the most suitable variables to minimize correlation effects 
in energy-loss straggling.

It is convenient, for that purpose, to switch to the notation used in previous work9’26. We 
consider the fluctuation in nuclear energy loss,

(AE-ÂË)2 = N'xW = N'x < d2p{T{j)i)+ T(p2Y)z > (66)

of an ion to an ideal gas of homonuclear diatomic molecules. Here, p} and pi are impact parameters 
relative to target nuclei, T(/>) is the energy transferred to an atom in an individual ion-atom col
lision at impact parameter p (calculated from classical scattering theory), and A" the number of 
molecules per volume. W is called the straggling parameter of a molecule. It is readily seen to have 
the form

where

w/ = + (67)

W2= \d2p(T(p)y (67a)

is the straggling parameter of an individual atom, and

> (68)

a correlation term.
It has been shown9 that AW12 becomes

2nd2

in the short-range limit, i.e., for large internuclear distance d. Here,

5; = s2 = p'7Æ(/>) (69a)
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is the atomic stopping cross section. Conversely, in the long-range limit, i.e., for small d, one finds9

(70)

Eq. (69) shows that in the short-range limit, the correlation term W]2 is small, while according 
to (70), it is large in the long-range limit. In other words, the statistical variables 7] (=T (/>,)) and 
T2 are appropriate to describe the interaction in the short-range limit, but are inconvenient in the 
opposite case. In a triatomic molecule, or a dense medium, higher correlations would enter es
sentially.

It is more attractive, for long-range interaction, to split the energy loss according to

?! + Tg = Te + Tt (71)

into an elastic and an inelastic part Te and 7), respectively, where

and P. = Ppi) and P2 = P^Pi) are momentum transfers to individual atoms. px and p2 are vectorial 
impact parameters, and M is the atomic mass.

The straggling parameter splits correspondingly into

(72)

where We and Wt represent the fluctuation in elastic and inelastic energy loss, respectively, and 
AHj, a correlation term.

In appendix A, the following expressions are derived for the three terms,

in the long-range approximation, and
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in the short-range approximation.
Thus, the correlation is weak in the long-range limit but strong in the opposite case. In other 

words, the statistical variables Te and 7) are complementary to and T2 .
As is indicated in appendix A, the evaluation hinges on the simplifying assumption of small

angle scattering. The present results should, therefore, not be utilized uncritically in molecular-col
lision physics. The example does, however, illustrate in a very simple way the usefulness of introducing 
“collective” modes to reduce correlation effects in the long-range approximation.

There is another, essentially independent reason to favor collective coordinates Te and 7) in 
case of long-range interaction.The use of the energy-loss functions T^p^ and 7~(/>2) in eq. (66) implies 
that the constituent atoms in the molecule act as free atoms with regard to scattering of the projectile. 
This approximation, while justified for close collisions, must in general break down for distant Col
lisons because of the distortion of the projectile-atom interaction by valence effects. This does not 
affect the conclusion that Te and 7) are appropriate variables for collisions at large impact para
meters, but the relation with atomic scattering parameters becomes more complex than indicated 
in eq. (71a).

7. Evaluation of Cumulative Effects

Before going into applieations, let us look at various ways of how to evaluate 
some cumulative effect U on the basis of eqs. (31) and (32), or (34).

Quite often, one will be satisfied with the average value U and the fluctu
ation AZ72 = (U— U)2. According to (31) we have

i.e.,

Un =^dUUnG(U') 11 = 0, (75)

t/t/G(Z7)-l; (76a)

(76b) 
a

W = zfcuzaPa + ^uau0AP2 ; (76c)
\ a aß I
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These relationships could also have been derived directly from eqs. (8) and 
(13). Eq. (76b) and the first part of (76c) are the usual relations for mean value 
and fluctuation5. The rest of (76c) is not present in standard penetration theory 
for random media.

In particular, in case of short-range interaction, eqs. (57) and (76c) yield

At/2 = Nx E“X + ^E rfr(£2(r) - 1 ) (77)

for an isotropic medium.
In case of a polyatomic target, we have

(7 = ^2^,
I

p(Da >
a

(76b')

At/2

E u(i ta

according to (34), and

At/2 JVx E C(I ) E 11 (I )a°a T

. I «

(76c/)

(77')

by means of (46) and (46a) if the short-range approximation is valid. (77') 
approaches a similar form as (77) only if the medium is disordered, i.e., when 
^2aj)(r) — 1 is independent of I and J.

Extension of these relationships to vectorial quantities and to the continuum 
case is straightforward.

Consider next the case of a discrete probability distribution, as discussed 
briefly in the foregoing section. For simplicity, let ua be given by

= v ; v = 0, ± l, + 2,... (78)
so

t7=2X*

and
1 Pn

G„ dte“u-^
du Jo

(79)

or
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with

A(C) = Z(1-C’)P,-|S(1-C')(1-C'')4P2 (80)
” vu

The integration over £ goes along a closed path including the point £ = 0. Hence,

—
1 du

U!d?e C = 0
(81)

Thus, exact evaluation of the generalized Bothe formula is possible in this case. 
Eq. (81) may become useful in the analysis of ionization phenomena.
Let us return to the more general case of a probability density (31), but 

apply the diffusion approximation27, i.e., assume that the bits ua are “small”. 
Then, (32) reads

A + a ) (82)
a a oeß

up to second order in ua, and (31) yields

G(U) =—------- e (83)
1/lwD2

with U and AU2 given by (76b) and (76c). The limitations of the gaussian ap
proximation have been discussed extensively2-5,17,27.

Finally, let us write eq. (32) in the case of short-range interaction,

Eq. (84) offers itself for a perturbation treatment810 in case of weak correlation. 
Indeed, take some representative value of t in the Bothe integral (33), such as 
the median value tm(U) defined by

dtel,u~^xaW= 2- (85)

and write (84) in the form

M S >«(i) (86)

with

<r(C = S(1 -e 'x)o- (87a)
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and

In this manner, for weak correlation, results derived on the basis of Poisson 
statistics can be modified such as to incorporate correlations.

8. Applications

Stopping of Charged Particles.
Let us consider a standard problem of the theory of particle penetration, the 
energy-loss spectrum of a charged particle after penetration of a path length x 
in a stopping medium. According to common notation1,5’28’29, the individual

according to eq. (44). The quantity S(k) can also be written in the form

S(fc)=p/?*»7(1») (90')

by means of (38a), where

event is characterized by a spectrum of energy loss Ta or, in continuum
notation, da(T), so the mean energy loss ÄE and fluctuation ß2 = (AE—ÆË)2
are given by (76b) and (76c),

ÂË = NxS ; (88)

Q2 = Wx(W+AW) ; (89)
where ~

S = ZT>a= W) ; 
a J

(88a)

W = Irrfo(7-) ;
a v

(89a)

(89b)

and
s(*) = E7X(*J(X (90)
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^(p) = E T.PM = [dTTP (p ,T) , (90a)
a J

and P(p, T)dTis the probability for energy loss (T,dT') in a collision at impact 
parameter p. By comparison of (90) with (88a), as well as (38a) with (38), it 
is evident that

S(Æ = 0)-S, (91)

and therefore, in the short-range limit,

4 w-w F*(5(fc) -11=s2 ■ 24/rfe(r) -1 * ’ (92)
where the second identity assumes the medium to be isotropic. The latter result 
has been mentioned in ref. 12.

Specifically, for a diatomic gas, insertion of (49a) into (89b) yields

AI/F = ——y dk\S(E) |2sinT<7, (93)

a result that has been derived previously by a rather different procedure9. The 
consequences of eq. (93) have been discussed in considerable detail912. It is, 
however, worthwhile to repeat that in the short-range approximation, A W 
becomes positive for the molecular gas. Experimental checks11 have confirmed 
both the sign and the magnitude of the predicted values of AW.

According to the discussion following eq. (57), the value of AW in case of 
an amorphous stopping medium is roughly equal in magnitude, but opposite 
in sign, to the one for the diatomic gas. For example, for amorphous selenium 
(cf. footnote on p.20),

S2 1.3 
2ti T ’

For the full energy-loss spectrum G (AE')d(AE'), eq. (32) yields

1 r 1G(A£)= — dte“åE-<å(t'>=--—-,
4 71J _ oo

'c + i oo

dsesAE~^-‘^
c — i co

(94)

where

^A(z) = Ax |<7tr(i) 1 ’ (27r)2 ’ „(/,*) hi/*)-ni
(95)

and
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ML*) = Z O l‘Ta)aa(k) ;a

°M = otr(t,k = 0) ;

(95a)

(95b)

The second version of eq. (94) is a generalization of Landau’s formula4 to a 
nonrandom stopping medium. In the short-range limit, for an isotropic medium, 
eq. (95) simplifies to

(96)

When (95) is evaluated in the diffusion approximation, eq. (82), (94) takes 
the form of a gaussian with the width Q2, eq. (89), centered around ÆË, eq. 
(88). Expansion up to third order in t yields an extension of Vavilov’s formula30,

M(0 = .M^+PW^-WW)} (97)

where

and
âa=3'(2^jî ;

(98)

(99)

In particular, in the short-range approximation, we have

and therefore

"oO

AQ^^ 3SIE-2JV
0

AQJQ, ~ IP
AW/W = QS’

(99')

(100)

independent of the actual correlation function. The dimensionless ratio (100) 
is of the order of ~ 1, cf. eqs. (88a), (89a), and (98). Therefore, the skewness 
correction AQJQ~ must normally be suspected to be of the same order of mag
nitude as the straggling correction AW/W.

After insertion of (97) into (94) one obtains

G(A£) S ± cos {/(AE-Wx.S) +1Z3JVA(Q,+AQ^)} (101)
“00 
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or, in terms of Airy functions16, the usual expression29 30 with W replaced by 
IT-f-AfF and Q by

With regard to experimental checks of correlation effects on energy loss, 
straggling measurements on amorphous solids are desirable, preferably in tar
gets where the pair correlation or the structure factor are known with sufficient 
accuracy, so that at least one of the two integrals in eq. (92) can be evaluated. 
As was the case in molecular targets, one might first wish to trace the energy 
region where ! A PF/IT] is largest, i.e., where the stopping power has its maxi
mum. In this region, the significant contributions to the stopping power origi
nate from collisions at impact parameters ^aoy/z/o with v ~ for light ions,5 
where a0 and y0 are the Bohr radius and Bohr velocity. Therefore, the short- 
range approximation appears acceptable.

As a word of caution, one may add that the straggling and skewness para
meters occurring in this discussion are to be understood strictly as defined 
through the second and third moment over an energy-loss distribution inte
grated over all scattering angles at a well-defined penetration depth. They are 
not necessarily related in a simple manner with the half-width of an energy
loss distribution integrated over a limited range of scattering angles. However, 
the problem of finding such a relationship0 is only loosely connected with the 
effect of correlations on straggling, and therefore not discussed in more detail 
in this context.

Multiple Scattering

The problem of small-angle multiple scattering is a two-dimensional analog of 
the problem of energy loss, except for the fact that energy loss is a one-way 
process31. For a recent summary, the reader is referred to ref. 12.

In accordance with the notation applied in ref. 12, consider a series of scat
tering processes at small angles y, and take y as a vector in a plane perpendic
ular to the beam. Then, the angular distribution after path length x reads, 
according to (31), 

G(ot)</2a = —
(^) J

(102)

where, by means of (32) and (44)

^A(x) = JVx|<r0(x)-j-p2A(S(fc) - l)ff(x,fc)a(M, —fc)| , (103)

and
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o-0(x) = a(x,0) ;

(104a)

(104b)

Multiple scattering is normally dominated by nuclear collisions5. Therefore, 
application of the short-range approximation appears well justified10, and

^A(x) JVx ?

The transport cross section a0(x) simplifies to

(105)

W = j^(Ç') (1 - Jo(^)) = cr0(x) (104bz)

in case of azimuthally symmetric scattering. Similarly, (102) reads

G{ol) = G(a) = y- I xdxJo[xoc)e~zA^ ; (106)
^Jo

Eq. (106) is Bothe’s formula in the standard form applying to small-angle scat
tering. Jo is the zero-order Bessel function of the first kind.

Eq. (105) can be discussed along the same lines as eq. (96). In the partic
ular case of a diatomic molecule, (105), (106), and (49) yield

1 f°°G(a) = xdxjr0(xa)-e •Vx<‘ToW-l(<’o(x))72w!} ; (107)
^Jo

a result that has been derived previously by a different procedure; it has also 
been evaluated explicitly, and confirmed experimentally810.

It is an interesting feature of eq. (107) that it predicts a smaller half-width 
of the multiple-scattering profile for a diatomic gas, in comparison with the 
equivalent random medium. Since, in the short-range limit, the sign of the 

*OO

correction depends on the factor 2JV dr(g2(r) —1), cf. eq. (57), it may readily be 
Jo

concluded that for an amorphous target, the multiple scattering profile is broader 
than the profile for an otherwise equivalent random medium.

However, correlation effects on the multiple-scattering half-width in mo
lecular gases have been found to be pronounced only at extremely small target 
thicknesses which are hard to achieve experimentally in solids. Therefore, these 
effects are important only in case of very thin amorphous layers ( << lOOyf).



34 40:5

Appendix A. Derivation of eqs. (73) and (74)

According to (71a) we have 

and hence

^,;= <pvr{f}2 > = I < pV( T, + T2r> + x,± x2

where

V = A < f >
and

<p2/’(/>12 + P22)(A-P2) >;

(Al)

(A2)

(A3)

(A4)

(A5)

Let us assume small-angle scattering to be dominating. Then, the momentum 
transfer is approximately perpendicular to the ion trajectory, or

= S^P(A), (A6)
Cl

and correspondingly for P2.
Intergrals are evaluated within the following scheme9 10,

< <Mpi>p2) > = p2Ap2A/'(Pi^) <dCPi-P2-fe) >>

where b is the projection of the molecular axis on a plane perpendicular to the 
ionic trajectory. Moreover,

< <5(Pi p2 -&) > ~ 2ndr + ° (a | (A?a)

for short-range interaction, and

< d(pj —p2 — fe) > ~ <^(P1 —p2)+v” V2 ^CP1 —P2)+O{^4} (A7b)u p}

for long-range interaction. After carrying out the integrations one finds
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and

(short-range)

(long-range)

(short-range)

(long-range)

(A8)

(A9)

apart from terms that are small of order d 4 or d\ respectively. After inserting 
Xx and X2 into (A2) and (A3), and applying (69) and (70), one finds (73) and (74).
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To Otto J\leuge bauer 

on the occasion of his eightieth birthday, 26 May 1979, 
with admiration, gratitude, and affection.

Tn the present paper our chief concern is with the precise manner of computing 
certain time-intervals between like syzygies - conjunctions or oppositions of Sun 
and Moon — within Babylonian lunar theory according to System A. These 
intervals are the lengths of five or of six consecutive lunations, both important for 
the construction of eclipse tables, and they are affected by the variation in apparent 
lunar and solar velocities. The Babylonian numerical techniques for introducing 
the latter influence have long been reproducible and understood, and it is the 
ancient accounting for the effects of lunar anomaly that we are here bringing 
under exact control for the first time.

Our access to the electronic computers of our institutions, particularly the one 
at the Computer Center of the University of Illinois at Chicago Circle, is in large 
measure responsible for our success in reconstructiong the ancient scheme for 
deriving V and W, as we call the functions of relevance for 5-month and 6-month 
intervals, respectively.

In what follows, we first outline the background of our problem and present 
its solution. Next, we draw attention to direct textual support for our reconstruc
ted scheme, and to texts that employ it. Finally, we take this opportunity to publish 
some new results on the corpus of lunar texts of System A in ACT,1 though they 
have nothing directly to do with the functions V and W. In three instances we 
have joined new fragments to those published in ACT. In the rest we have used 
the extensive tables generated by our computers to date texts that remained un
dated in ACT, or to learn more about them in other respects.

1. For this and other abbreviations see the Bibliography.
2. A. Aaboe’s previous visits to the British Museum, during which some of the fragments published 
below were rejoined, were supported by various grants from the National Science Foundation and 
by a Guggenheim Fellowship. The photographs are published through the courtesy of the Trustees 
of the British Museum.

All the cuneiform tablets we have occasion to mention happen to derive from 
the astronomical archive in Babylon — none is from Uruk - and they all came to 
the British Museum through acquisition from dealers during the last decades of 
last century. The hitherto unpublished texts, and the photographs, are published 
here through the courtesy of the Trustees of the British Museum.

A. Aaboe had the opportunity to collate several of the relevant texts in the 
British Museum in August 1977, enjoying once more the hospitality of the Depart
ment of Western Asiatic Antiquities2 and of their Keeper, Dr. Edmond Sollberger.
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Ie Introduction of W and V

Otto Neugebauer s Astronomical Cuneiform Texts — ACT for short - appeared in 1955 
and contained editions of the then known cuneiform texts that deal with mathe
matical astronomy, some 300 in number and almost all of the Scleucid period. 
Since then particular interest has been centred on a group of new texts, published 
by Neugebauer and by Aaboe, that threw light on a certain problem raised and left 
unsolved in ACT. It concerns the manner in which time intervals between like 
syzygies - either conjunctions or oppositions of Sun and Moon - were computed 
in the lunar theory according to System A.

The length of the true synodic month, say, from one conjunction to the next, 
is affected by the variation in both lunar and solar velocity. Babylonian lunar 
theory of both System A and System B separate these effects into two independent 
additive terms and consider the synodic month to be

1 month = 29d+ GH+JH (see footnote 3) 
where G depends on lunar anomaly, and J on solar anomaly or rather on the 
Sun’s longitude, for no distinction is drawn between sidereal and anomalistic 
year. System A has J depend directly on solar longitude in a manner that was 
under complete arithmetical control in ACT, and that makes astronomical sense 
as well. However, the derivation of G in this system raised difficulties, not of 
arithmetical, but of astronomical character.

Column G is derived from Column <T>, a zig-zag function of extrema
Af=2;l7,4,48,53,20H and m = 1 ;57,47,57,46,40H 

and monthly difference
</=0;2,45,55,33,20H/m.

The period of O is the anomalistic month and T is, in fact, in precise phase 
with lunar velocity F. Column O is the second column ofa standard lunar ephemeris 
according to System A, just following the one giving year and month. The sole 
purpose of O seemed to be to serve as a basis for the computation of G. The trans
formation of <I> into G is the subject of several procedure texts, a new variant of 
which we publish below as ’’ACT No. 207cc augmented.” The scheme is summa
rised in Table 1 which in essence is a copy of the table given in ACT, p.60. It pre
sents a selection of values of O - it matters whether such a value belongs to an 
ascending or descending branch of the zig-zag function, and this is indicated by the

3. ld = 6H=6,0 (time) degrees. The large hour (H) is introduced for convenience in modern text 
editions; the Babylonian unit is the time degree (us).
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Table 1.
a à

J)

2/3,2ol Z/S-/?, 57,201 2/o 0
2, O, 2, /3,2ol 2,/3o,22/3,2o* 2/o/7/fc/o I
2. a/y,z6/o y 2//2,3s-,33,2of 2/o/3,Zo 2
2/2,26/ol xgy, s//g/3,2ot 2///6/O 3
2/2, 8/3,2oi 2/¥,3?, 2/3 2ot 2/2/7/é/o y
2; ////, é/O* 2/¥/?, /5/3,2o1 2/y,26/o $■
2//,33,2oy 2/V, f,2g/3,2ot 2/6/3,Zo 6
2; ///$; 33,20 4- 2/3/3/i,*3,2ot 2/8/7/é/o 7
2/o/7/4/o3 2/3,2$; ST, 33,2ot 2/0/0 g

2; lO, ¥o I 2/3, 8, g,S3,2ot 2/3 2o ?
2: (0,12/3,2,0^

i
2/2 $0 21, f3t2ot

i i
1;ZO

1

i
/;«//, c,y0 1

i
2. o, 3\2o\ V/é/2/2/6/o

1

/,«/3,2o6 2- oyiZtSiiot /.¥///, i/o 8;2O
//7«;33/oi- 2,- <5,23/2,0,2ot y//2/,28/J,2o 7,-20

8/3,2of 2, o, $',55- 33,2ot dtijy, ¥,26/o 6Zo
(.«/s;$r, 33,201 ///y?, s’,S3,zot /$<//§ S3,2o $}2o
/,«,33/2/3,2ct //7 3e>22/3,2o t y S6 ¥

//9/z,3S,33,2ot /«J?, 33,20 2
(•«// /g/3,2ot ¥/6,3S,33,2o 0IL ($8,37, 2/3,20* z

Unietjiolaiiotv toefßczenks belong to the.preceA&nj inter vads

small arrows - and the corresponding values of G. If a value offfi is not in the table, 
the corresponding G-value is found by linear interpolation in Table 1. Thus the 
arithmetical structure of the ffi-G scheme was completely under control in ACT, 
but it was otherwise with its astronomical signifiance. It was not even known in 
what units 0 was measured - as indicated above, they turned out to be large hours.

The text that established this, and which brought in connexion with the 
length of a Saros (an interval of 223 months) — we call it the Saros Text — was 
published by Neugebauer in 1957. The text is difficult and still not fully under
stood, but it enabled Neugebauer to perceive astronomical relations between 
and G, and recognise that the difference between the length of 223 consecutive 
months and should be constant. B. L. van der Waerden [1966] suggested that this 
constant should be a whole number of days (6585) and put forward the conjec
ture that the O-function when in actual use, and not just employed as an indica
tor of lunar anomaly, should be truncated above and below.

Beginning in 1968, Aaboe published a series of texts that were concerned with 
Column O in relation to other functions, measuring the length of various numbers 
of consecutive lunations. It was particularly Text E in Aaboe [1968] that offered 
an insight into a consistent methodology underlying the derivation of such inter- 
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vals as G from O. Text E dealt in tabular form with O and a function A, attested 
and named already in ACT though then of unknown significance, but in such 
a manner that it enabled Aaboe to identify beyond doubt, as well as A, and to 
give an astronomical justification of the table’s structure.

It appeared that A played a role equivalent to that of G, but for intervals of 
twelve months. Thus the twelve-month interval, or “year”, is

12 months = 354dT AH+YH
where A depends on O, i. e. on lunar anomaly, and Y on longitude (this compo
nent was found later, see Aaboe [1969]; we may add that though Y is closely 
related to J, it is not precisely equal to the sum of the relevant twelve J-values but 
incorporates an additive constant so that it vanishes on most of the fast arc, like 
J; this constant is absorbed in the mean value of A). With the method under
lying Text E, Aaboe could justify the O-G scheme (see Aaboe [1968] and, most 
recently, HAMA).

Prompted by various ephemerides, mostly eclipse texts, Aaboe [1971] proposed 
the existence of an analogous function W concerned with six-month intervals 
and restored a small fragment of an auxiliary table according to the methods for 
generating G and A from O, but failed to reach perfect agreement with the 
ephemerides. He took the total length of the six lunations preceding syzygy 
number n to be

6 months = W(n)+ Z(w), 
modulo an integral number of days, where W(n) depends on lunar anomaly, and 
Z(n) on solar anomaly (the integral number of days is either 176, 177, or 178). 
The term Z(w) offers no difficulties, for it is simply the sum of J(w) and its five 
monthly predecessors (see, e. g. Aaboe [1971]); but it is not so with W(n). Dis
regarding for the moment the five-month intervals, it is this function we find in 
the eclipse text ACT No. 60, Column VIII, and Neugebauer assumed, very na
turally, that is should be the sum of the six relevant G-values, but this assumption 
led to perfect agreement with the preserved values of the text only in very few 
instances. To be sure, the deviations were in general small small enough to 
allow a secure identification of the astronomical meaning of this column - but 
they seemed to be of a systematic character. Thus it was clear to Neugebauer that 
his assumption could not offer a consistent explanation of the arithmetical structure 
of Column VIII of No. 60.

It turns out that all but a few of the entries in this column - still excepting the 
five month intervals can be exactly derived by linear interpolation in a O-W 
table (Table 2) which is gathered in the following simple arithmetical fashion 
(most of the few exceptions appear to be consequences of very natural arith
metical mistakes).



4 uz J^nCerjool.

/. 2/3,10 1 / s//, 4/0
2/3, 2,l3,Zo 1 6/1/8 £3,2o ZS; Hl, i O
2/1/1,16,Ho 1 S} SV, Ho Zg,H2, 3o
2/l,lC/o 4- s, st, 2/, /y, y, 24 Ho 2H}HoSo

S'. 2/2, S,53,2o 4 £/¥J7,3/,S7, 4,Ho Z2H^3o

2,//,$7,4,¥o 4 $} 38,29/2/7 HC Ho Z0,Hz,3o
2, //, 33,Zo 4- 5.31/6/7,21. Zb Ho ! S;HZ, 3o
2,//,/£ 33, 20 4 S,17/]/S/<. 6/0 It-12,30
2/0/7, Hb,Ho 4 5/3,38 lb/7/b/o /£;¥2,3O

to. 2,<o,Ho 4- S, (7, 51,20. VH lb, Ho /2,H2,3o
2/o,22/3,2o 4 S/6/l/Z/l, CHo 10/2,30
2/0, V/fe/o * S/H, 7, 7 37, Hb/o 8,y2,3o
2 , 7, £4, Vo t $ 12, Z/,34/7, Ho, Ho 4,3o
2, 7/8/3,10 4- 5/0/7,51 H,2b/o H/2,3o

IS. 2, ?//, 6,¥o 4 5, 1, $j. HS ", 4/o 2/2/0
2, 8, ?3,2o Z . /.I vj 2/7/6, Ho _ O/2/0
2,8,35 33 Zo i, S/o/o, 7,2 V Zb,Ho 1/1/0
2,8/7,16, Ho 4- S, //, 8/8/1, C, Ho i/1/o
2, f 4 S/l/l/l/l/C/o S/7/o

Zo 2,7/2/3,20 4 S/I/O,11,<3,10 7/0/0
2, 7,-27 24/0 4 5/7/5,33,10 !7/o
2, 7, 4, Ho 4- 5,20 Sg 1/8/3,10 11/3 2.0
2, 6/8/3,10 4 $21 SH !<=), / 33,Zo 13/7/0
2,6,3/, CHo 4 5/1,26 (o/2/3,Zo /S/7/0zs. 2, 4, /3,2o 4 5, 3133,31/8/3,Zo 17/7/0
2, S,5£,33,Zo 4 5} Ho/, 32/5/3,lo //l/o
2, S', 37, % Ho 4 S,16,35 3 V2/3,2o 21,17/0
2, S-,20 4 £53/9, 8, g. S3 Zo Z3/7/O
2, £ 2/3,Zo 4 SV £8 S3 Zo 2S H/o

3o. 2, ¥, 11/6,Vo 4 7 27/7,30
2, ¥,24, Vo 4 n /O/1/6, Ho 27/7,30
2, V, 8,S-3 2o 4 24////, CIO 3!
2, 3, 5'/, 4, Ho 4 3C,2o/1/6/o 32
2, 3, 33,2o 4 Hb, 7,21,16 Ho 33

is. 2, 3. /$. 3},2o j £4////, 4,yo 3Y
2z2,57y4,yo''s| /, 6,3£ y, Zb, Ho 3S
2,\2 /o 41 'J.'VH H.2Z>/o 34
2, X«/3,2o 1 l/g/(.,Sl, b/o 37
2, A y,24, Ho 4 l^/î/H/CHo 3g

Ho. 2//, ¥4/0 4 1,51, o/i,Zb Ho 3?
2, <28,53,20 4 2,2/1// 6,Ho Ho
2, '(//, 4, Ho 4 2/5, 0 HHzeHo HI
2, Q/3,20 2,17/7,21/6/0 HZ
2,/o/r, 33,Zo 4- Jl/o. //,Sj, b/o H3

,<5, b/7/4,Vo 4 2/3//, '^22, Ho HH
>2 ' 4 3, 6, ii; H'.Zb Ho /$
'/,^/2/3.2o 4 3,2o, //,$/, 6, Ho HC
/,57,2V 24/0 4 3 31, 5,ZS,SS, 33 2o fC Sjzo
/Sy, 4/o 4 3/8, <8/S,$S/3,Zo Hg

Sb. /,SK/8,£jr2o 4 1, 1,11/2/5 33, Zo H7
/,SE,3/, 6/0 4 1/7,38, 1555/3 Zo So
/,58/3,2o 4 1,32,27,31/5, 33, 20 So
//7, ST 33,20 4 V/7/6,31,3533,Zo So
/,5/S^ 8/3,Zo) S', 2, $25 SS/3 Zo So

S? /,££ 15,55 3},lot S/6, SI Ie), IS, 33 Zo So
1/8,33 Hl,<3,lol S’,31,37/7, 2, t3, Zo y? Ho
/ S7S/,28, Sj,2ot S,HS;si,Sl, CHo Hi. H/o
//7, 7/S; 33 2o I1 S’,Se) Hi, g,S3,Zo 17 Z/o
/,S7(27 2/3'2of <3, g,S3,Zo HS. 2,3o

4o0. /sy/y/?//zot 2SSH, H,Zb,Ho 2/0
2, 0, 2, 35/3 Zo) 3g, f,2gS3Zo Ho.ss
2, o,2o'.22/3,2ot H^,32/3,Zo 3g.S/ fS
2, 0, 3# g, S3,2Ot /( o,27 2H, 24, Ho 3C-S//S
2, o/S5}$5}33,Zot //0H7, 2/3,Zo 31 St, IS
2, /, /3/2/3,2ot 1^20/7 ^,i7YC,Ho 32/7 SS
2, /, 3/,28/3,201 ! ^zsio/izc/o 30; H/O

1 able 2. w Jnterjiol.

2, I, 31 2g,S3,Zot /,29,2£, Ho/H/C, Ho
2, i,H7/S/3,Zof- l/i, l,S8/i, CHo 27 2,30
2, 2, 7, 2/3 2ot )/i 2H2/7/C/0 27. 2,30
2, 2ZH/8 S3 2ot 1/3,27 SV HZC/o 25} Z/o

7o. 2, 2,Hz/S/3,Zo1 2 0/7/7, 2/3,lo 23; I/o
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First wc take a sequence of O-values covering one wave of the O-function fairly 
densely. More specifically, we begin with the value 2,13,20 4 and proceed in 
steps of 17,46,40, reflecting as usual in O’s extrema (see Table 2). The difference 
17,46,40 has astronomical signifiance: it is the effective change in <6 over one 
Saros, or 223 months. This fact is of absolute essence in other tables involving 
O, but here any other small regular number might in principle have served as 
well. This particular choice of spacing between the O-values offers, however, the 
convenience that the first 56 entries in the O-column of Table 2 are also found in 
the O-G scheme (Table 1), and various other advantages as well. After 131 steps 
we are very' nearly back to the initial value of O.

Next we associate with each of these 131 O-values a value of W which is the sum 
of six successive monthly G-values, the last of which corresponds to the relevant 
0-value.

As an example, consider the first entry in the table. The O-value is 2,13,20 , 
and it and its five monthly prececessors have associated with them, according to 
Table 1, the following G-values:

O0 =2;13,20; ~ Go = 2 ;40H
=2;16,5,55,33,20| ~ G_1=2;40

<U_2 = 2;15,17,46,40f - G_2 = 2 ;40,42,57,46,40
O_3 = 2;12,31,51,6,40t ~ G_3 = 2 ;58,58,45,55,33,20
O_4 = 2;9,45,55,33,20f - G_4 = 3 ;24,47,24,26,40
O_5 = 2 ;71 - G_5 = 3;50,36, 2,57,46,40

whose sum is: 2G=18;15, 5,11, 6,40 H
or, reduced modulo 6 in the first place, 15,5,11,6,40 which is the value of W 
entered opposite 2,13,204- in the table.

Thus the O-W table is constructed, and if we wish to find a value ofW corres
ponding to a O-value that does not occur in the first column, we simply interpolate 
linearly. The relevant interpolation coefficients are given in the last column of 
Tables 2a and b (such a coefficient belongs to the interval preceding the line in 
which it is entered).

This scheme, motivated only by a desire for arithmetical convenience, serves 
to explain precisely several hitherto puzzling lunar texts where intervals of six 
months are of concern, as we shall see.

Intervals of six months are, of course, primarily of interest when one is dealing 
with eclipses, but here an occasional fivc-month interval will occur. It is a natural 
assumption that there was a table, similar to that for W, for five-month intervals, 
and Aaboe [1971] constructed such a function — he called it V — according to the 
same general principles that underlie the <t>-G and O-A schemes. In fact, it turns 
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out that the length of a five month interval was derived by combined use of the 
tables for W and G. More precisely, to compute the length of the five months 
previous to syzygy number n one found first the six-month interval belonging to 
the next syzygy and then subtracted the length of the last month or, if we retain 
the notation V for the five month interval,

V(n) =W(w+ 1)-G(n+ 1).

2° Textual Evidence for 0-W Scheme

There is direct textual evidence that the Babylonian astronomers possessed a 
scheme much like Table 2. First there is the small fragment BM 45930 (Text F) 
in [1971 J) whose preserved surface corresponds to the outlined area be
tween lines 36 and 47 of Table 2, except for isolated digits. Aaboe recognised that 
he was dealing with a function concerning the length of six-month intervals, na
med it W, and reconstructed the scheme according to the general methodology of 
functions related to <t>. His reconstruction fits the fragment perfectly, but it failed 
to reproduce exactly the entries in texts like No. 60. As fate would have it, his 
Text D is broken just so that it can equally well be accounted for by Aaboe" s 
scheme as by Table 2, for it covers almost precisely the intersection of the two 
schemes. A few more preserved lines would surely have deviated from the values 
reconstructed by Aaboe, for not only is there close agreement between Table 2 and 
the ephemerides, but ACT No. 207 gives the endings of lines 15-26 of the scheme’s 
W-values, and ACT No. 1005 actually preserves eight lines of the interpolation 
column of Table 2.

HCTTVo. 207 (BM 33593)
Transcription: Table 3.
The text is a fragment with only one side preserved. Neugebauer restored lines 8’ 
to 14’ as though they belonged to the O-G scheme, but could not make sense of 
the first seven lines. In fact, the text agrees perfectly with the endings of the W- 
values in lines 15 to 26 of Table 2. We think it unlikely that this fragment derives 
from the same tablet as Text D in Aaboe [1971]. The phrase sâ alla [. . .] (what
ever is beyond/below) indicates that an interpolation is called for. Thus we find, 
for example, in ACT No. 200b, Section 2 the formular lisd alia x dirig gam y 
\7\J-ma . . .” which means “whatever exceeds x multiply by j . . .” where inter
polation is described. For the rest of the phrase see ACT No. 1005 below.
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I- [ S-t
L g fa'Wo 

[ S^o/o^.ll'/Zb^o
IF,//jVVA 6A°

U f r,^,71¥2,S7,%'<’o 

[g'7jÆ>-22,0,-Zo 
Lg 0,3?33, 2© 
CS'zo^J /'2g^lo

, CS’/%5yJ/7£/sj33,2o
10. [S^^ZG./aZ^l^Zo

33,31,^/} zo 

[$',Vo/C,,}Zt3s'^3]Zo 
[gVfe.SS 3,Y2,l3,Zo]

Nlal-la.]
Sa. Cal- la.]
$4 [al- la]
Sa Lal-la.]

[Sa. a I - la] S’. '■' /?.
[si al-la]
Isa al-taj

Sa. L a. I ~ l^-J
Sa a[Z - la.]
Sa al-Lia] T-Z<f
Sa. al - l[a]
Sa al ■ I [a]
Sa al' l[a]

Table 3.

ACT NoToy

ACT No. 1005 (BM 34497)
This small fragment is published in transcription among the unidentified texts 
at the end of ACT, and in Pinches's copy as LBAT No. 156. It contains the outlined 
interpolation coefficients from line 121 to 128 of Table 2. What raises our identi
fication of the text beyond any doubt is the presence of the peculiar value 37 ;48,20 
in line 124, for it breaks an otherwise simple and natural pattern. In Neugebauer's 
transcription the numbers from Table 2 are preceded by initial 10’s. However, 
an inspection of Pinches's copy shows that what Neugebauer read as 10 is almost 
certainly the sign GAM of two diagonal wedges and this is confirmed by collation. 
The second and third preserved lines encl with remnants of signs that Neugebauer 
read as DU (rå) on which basis he surmised that the text gave a list of coefficients. 
The phrase “gam x DU” means “multiply by x" (cf. glossary of ACT and com
mentary to No. 207 above). In the fourth line is preserved what may be part of 
the last digit of a W-value.

Where Pinches read 32 in the last line, Neugebauer read 33 in agreement with 
Table 2. Neugebauer's reading is confirmed by collation.

3° Texts Employing W and V

We shall now turn to ephemerides containing the W-function. In our discussion 
we shall limit ourselves to the relevant columns; for the full extent of these texts 
we refer the reader to the original publications.
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ACT No. 60 (BM 45688)
This large, well-preserved tablet from Babylon concerns lunar eclipse possi
bilities from S. E. 137 to 160 (=174/3 to -151/0). It gives information about 
those members of a sequence of consecutive oppositions of the Moon where lunar 
latitude at a change of sign is smaller in absolute value. Curvature suggests that 
the right third of the tablet is broken off, so that it very likely contained all neces
sary columns up to and including at least Column M, the moment of syzygy, 
here opposition.

In Table 4 we have extracted Columns I, II, and VIII from this text, the 
column giving year and month, Column O, and a column with W and V. The 
lines are mostly six months apart. A dotted line indicates an occasional five- 
month interval and in the following line a value ofV is in order in Column VIII.

Where the preserved numbers in Column VIII agree with the scheme in 
Table 2 - or with the rule for computing a five-month interval — we have simply 
supplied the missing digits of the recomputed values in square brackets. Where 
they disagree, we have added the correctly computed number in the last column 
of Table 4. For an explanation of most of these divergencies, see the critical 
apparatus below.

We have a particular affection for this text: from its Column B Kugler (BMR 
p. 55f) managed to discover for the first time the rules for computing lunar longi
tudes according to System A, a remarkable achievement since it contains longi
tudes, not month by month, but 5 or 6 months apart. Strassmaier s copy is published 
in BMR, Tafel XIII, and Pinches's as EBAT No. 50.

Critical Apparatus
With but three exceptions, each of the errors in Column VIII can be explained 
as the result of a simple misuse of Table 2. We include a discussion of these, for 
such errors - rare in the astronomical literature as whole — afford us an insight 
into the computational routines of the Babylonian astronomers. Thus we learn 
that when they entered their version of Table 2 with a given value of O, they 
invariably related it to the <I>-value in the first line of the interval to which it 
belongs. In three instances they erred by taking the interpolation coefficient 
from the line just before that of the correct one. In four cases the error consists in 
a shift of the interpolated part one sexagesimal place to the right or left of the 
correct position.
Obv. 1. 1: We cannot derive this value from Table 2. A recent collation shows 
clearly 20,52,5[0. . .], with 4[0] possible in the last place, but not 20,32,5[0. . .] 
as in ACT.
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Obv. 1. 2:
We have for

2,17 VII 1:0 = 1 ;58,40,44,26,40 f
Table 2, 1. 56: 1 ;58,33,42,13,201 ~ 5;31,37,17, 2,13,20

0; 0, 7, 2,13,20 X 49 ;40 = 0; 5,49,30,22,13,20
W = 5;37,26,47,24,26,40

which agrees with the text’s 5,37,26,47 [•••]• However, 49;40 is the interpolation 
coefficient for the interval preceding 1. 56. The correct coefficient, 48;4,10, is 
found in 1. 57.

Obv. 1.3:
If we use the interpolation coefficient 49 ;51,15 (1. 112) we obtain in a like man

ner
W = 3;54,50,17,7,46,40H

(text: 3,54,50,17,l61 [. .]). The correct coefficient is 48;51,15 (1. 113).

Obv. 1.4:
If we use the interpolation coefficient 37 (1. 38) we get

W= 1 ;30,56,17,46,40H
(text: 1,30,56,17,4[0. . .]). The correct coefficient is 38 (1. 39).

Obv. 1.11:
We obtain the text’s 0; 13,20,22,13,20H if we enter Table 2 with

O = 2;4,35,33,20|
instead of the correct

<D = 2;4,35,55,33,20^.

Obv. 1. 21:
At 2,26 VII we expect a value of V for the five-month interval. If we go one 

month ahead to month VIII we find the value of O to be
<D= 1 ;59,54,48,53,20f

to which Table 2 assigns W = 0 ;32,43,14,26,40H. This is precisely the entry of the 
text, so the scribe forgot to subtract the appropriate value of G, namely

G = 4;54,13,20H.

Four of the next five errors arise from a misalignment of the interpolated part. 
We shall only deal with the first of them in detail since the rest follow the same 
pattern.
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Table 4. IT W
Obv. 1. 2/71 

vm 
2/tz

2/3,3o,77/L/oi 
//'g/o/'fM/o't 
z.fS/c.ri/c/oï 
2. 2,<77(. Vo4-

2o,S2^l/////7] 
5,37/C/7[/////A 
3, ^¥, 40/7, %’{%///3 
/ 3o si I7yfo////'Z

5. 2, 7, 7/6/ot 7/4/4 ./ÿicfoj
2/7 & 2/0,24/7/é/o 4 S' 17 ZS/C, é/o/

*0 2, 1,4/H, é/oî //6, 3/7 2(/HÔ\
Z Zo kt 2 /S/g/32oV / 90 26/ /O

ST / ,SJ <3,2o7 j/i.sS’/rsy^zoî
!D. 2/1 k 2 12,si, g/3/uA 5/7 5/7 7/c[7o]

S 2, V 3$;S5/3 2o4 /3 2o/z/&>//Z«j
2.22 V 2, 7 3S332o7 22C22<Z,2yLzC/o]

2/Z/7/C/o* 2/3/1 2^s[3 2o]
2,23 m //=} 27 2,l3,2ot <3, «, 53

is. 2. LC, Z3/ 33,20 7 3,78,11/3/2 '3jzo~]
2,Zy K 2 /, 3i2g/3,Zo\ 2,1 g,g/'3,2o

S Z, lo/ot 7, Zo/y 273S 3 3,l2o"|
2, c/y, y,2£/c/ 5/3 VS,27, 7,22/0

2£ 2, 5/7 27/i/o\ 2/7/0,23/7/7,  ZC/o
Zo. 2/&1L 2, H/C/oV g,77/7/. 7/C/o

22 / SgTl 2,13,2Ô^ 32.73./7.2C/O
2/7 Z 2, <3 77,2/7oî 5/7,37,37 7/l/o

VL 2, 3 75/7/C/oV 37, 7/7/6/O
2W Z 2 8/1/1, 4/of 2/554/9/S'3 3 2o

z? & 2 7/2/3,2o2 5/0 .2,959X24 Vo]
2, 2/)/5/3/c/ 2, . ,23, 9,35(/Xj

2/Îvl . Z/7,3y/i/3,2oi_ /^/sso]...
3 2 . ,78ll,C/oi 5ÎW 2/3,20]

/dev. /. 2 ioiZ 2, H,ZC,l7,7(>/ot 50$o32,/^/cJ
3 Z, C, 7/4/o4 5,36/o/[r22/3,2o]

2,31 v 2, 0,3/2 <3,20^ î.3M.y,2[o///////]
X 2 IlSoZZ <3 2oi /32 [717 2 73 2oJ

s 2,32 Y 2, .'//, 6/ot /' 2/[ô/o/y/é/oJ

X 2/6 52 S7 7C,7oV 2.2S3S tlo'/Z/Z^
2,33 S 2 . ./7.27.ZC yo4 Z$3 3o77[2C/o]

/X 2 4, z//3/oi 3 3/ 7olC3\o/72Z7o\
2,371 2 ç/sss/i/oï SVTSi S2/{p///////

/o. 0/T 2 3/S/3,2ot i/°l/77g^74C>/3.2D\
2,35 Z 2,i3 9?//, é/o 4 27 Si, 2, 2,13,1201

vz /,SF,22S?/6/ot Z2273/7,37/c/7o]
Z/GX 2 /7/Z/l, 4/ol 7 3?,-3y5y[2é/o7

VjLL 2 2 3s,33,2oV / (4^3/ ce, y0]
/S. X^ 2 6 SZ>t Tzyjo't7^// ///

2,3727 2/o/7/2L/oi T2o/7\7, 13 Zô]
XL 2 l/7,zÿu>/o\ l,27Z2ÏJC, C 7o\

2 3&Û. 2 ‘G, 0,7oi l2 37/s//v///^'/A
S 7,3/31, C/c/ W//////////////////3

2a. 2,3^ 2 I27o22/3,2oï V2///////7////////////
S 2, 7,53/2,(3,Zo7

2/oï 2, 7/7/6,Vot Z///Z/////////////2/

2ß.37.22. 1. <3,2o 
5,37/5,33, 1,23/3,20 
3,57/7/1.21, i/o 
1/1, o/7,2Z/o

73, °l.3l/7/C/o

/,3g/9 5/26/o 
s, v/7/s; 33,20

2, 6, 7Sl/2/3,2x>

2,3S/C3S/o

2/3/3,3i/l, é/o

5/0/l/°i/S,i3,Z0

7, ^/(//sy-ic/o

7,27Jo/o/4/C/o

1/2, I, g, 3/0

___________________

From ACT /Vo. SO
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Obv. 1. 22:
The computation should have proceeded thus:

2,27 1: <D = 2;13,44,26,40t
Table 2, 1.107: 2;13,40,22,13,20t -5:14,42,57,46,40

0; 0, 4, 4,26,40x50 =0; 3,23,42,13,20 
which yields W = 5;11,19,15,33,20H.

If, however, the interpolated part by mistake is moved one place to the right 
we obtain

5 ;14,42,57,46,40
-0; 0, 3,23,42,13,20 

5; 14,39,34, 4,26,40. 
which is precisely the value in the text.

Obv. 1. 26:
If the interpolated part is shifted one place to the right we get

W = 2 ;0,23,4,36,23,20H
(text: 2,.,23,4,36 [. . .]).

Rev. 1.3:
The reading given in Table 4 is not at all secure. However, we are fairly certain 

that neither the correct value, nor the results of natural mistakes can be brought 
in agreement with the preserved traces.

Rev. 1. 6:
Shifting the interpolated part one place to the right we get

W = 2 ;25,35,35,14,48,53,20H
(text: 2,25,35,1 [0 . . .] ending with one corner wedge).

Rev. 1. 9:
If we move the interpolated part one place to the left we get

W = 5;41,51,58,31,6,40H
(text: 5,41,51,58,2 [0 . . .] ending with two corner wedges).

Rev. 1. 13:
The text has 37 for 36 in the third place.

Rev. 1. 15:
The text has 3 for 4 in the first place.
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Rev. 1. 18:
Only traces of the first two digits remain. The best reading is 2,34 [. . .], but it 

is not very secure. However, they clearly do not agree with the correct value of 
W = 1;52,1,8,3,20H.

ACT No. 61a (BM 77238)
This fragmentary text, also from Babylon, concerns solar eclipse possibilities, but 
it is in other respects quite like No. 60. However, it contains further columns with 
corrections for solar anomaly and variable length of daylight while such columns 
were broken away from No. 60. In Table 5, the V-W column of No. 61a is pre
sented in the manner of Table 4. The first line contains a V-value, computed as 
described above, though proper consideration of latitude would have placed the 
fivc-month interval one line earlier. Except for the remnants of line 2 the preserved 
parts are in agreement with the W-scheme in Table 2.

Critical Apparatus
1. 2: If we enter Table 2 with

O = 2;15,40,17,46,40f 
instead of the correct value

O = 2; 15,41,17,46,40 f 
we obtain W = 3 ;35,38,4,54,26,40“
(text: [. . .] 5,38,4,54,26,40).

From, A^T No. 6ice

Table 5. CT] 2

/.

3,/2 7
k2!

2, iNi'NN. Yot
2, /S2,KYo<r

CW/JSp? V SV 26, Vo 
C 6^7,2

7,V6,Yo

3,3 y So, p 37 2t, Vo

S'. 3,/3 I
Vn

2, -7/^22,13,2oi
2, c'vøl

ACT No. 55 (BM 46015)
This text was first published in ACT. Neugebauer realised that an advance of 

one line in the text very likely corresponded to a 12-month interval, at least in 
most cases. However, he recognised the entry in Obv. Col. II, 1.4 as the G-value 
belonging to the conjunction at the end of S.E. 3,2 III. With his newly gained 
knowledge of the family of functions related to 0, Aaboe [1971] identified most of 
the entries of the text’s second column as A-values, confirmed Neugebauer's dating, 
and restored the text. He further identified the entry in Obv. II, 1.3 as a W-value, 
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but could not reproduce it precisely. He realised that the text broke an interval 
of one Saros (223 months) into 18 twelve-month intervals, one six-month, and one 
onc-month interval, or

223 months = (18- 12d- 1-6+ 1-1) months.
The later columns contain corrections for solar anomaly, and for seasonal change 
in length of daylight, and finally the corrected values of A, W, and G.

For the W-value in Obv. II, 1.3 Aaboe read with Neugebauer
W = 1,.,6,55,48,20 tab.

The O-value given by Aaboe for this line (S.E. 3,2 II) is
O = 2;0,37,35,33,20t

to which Table 2 assigns
W = l;0,6,55,58,20H.

Thus the last bit of ACT No. 55 is explained, for the next to last digit is poorly 
preserved and can be read 58 equally well as 48 (confirmed by recent collation).

ACT No. 54 (BM 35231+ 35355)
This text, composed of two small rejoined fragments, is published in transcription 
as ACT No. 54 and, in Pinches's copy, as LBAT Nos. 47 and 48. Neugebauer re
cognised that it is part of an eclipse text, and identified the character of the 
columns. The text, it now turns out, does indeed deal with eclipse possibilities - 
solar eclipses - from S.E. 235 to 241, as far as it is preserved. In Table 6 (p. 19) we 
have reconstructed the relevant columns of the text, numbering them so that 
Column I is the first of which any trace is preserved (this is little enough: merely 
traces of a final lai).

Critical Apparatus
II, 8’: only traces of tops of signs remain.
III, 8’: the last two digits are nearly destroyed.
111,10’: 3,19,9 should be 3,18,47; this error affects the rest of Column M.
III, 14’: [J,39,21 — reading uncertain, but traces are not consistent with the 
correct value of 3,51,37.
IV, 14’: leading digit - all preserved - could also be 5.

Comments
We have included in Table 6 only those columns that are relevant for the resto
ration of the fragment. We shall here merely identify them briefly and refer to 
ACT and later publications for further explanations:

Columns T] and Oj we have already met. The subscript] means, in the conven
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tion of ACT, that we are dealing with conjunctions rather than oppositions of 
Sun and Moon.

Column B1 gives the common longitude of Sun and Moon at conjunction. 
It is computed on the basis of a step-function which, in modern terms, can be 
looked upon as giving solar velocity in degrees per month, thus :

from Virgo 13° to Pisces 27°: = 30o/m
from Pisces 27° to Virgo 13°: = 28;7,30o/m.

Column Cj gives length of daylight in large hours as a function of solar longi
tude. For the scheme for converting B, into Q see ACT.
Column ly gives lunar latitude at conjunction in se (barley corn) where

1 se = 0;0,50°.

u u (negative, decreasing) 
u lai (negative, increasing)

These values are designated
lal lai (positive, increasing)
lai u (positive, decreasing)

with a terminology peculiar to Column E (elsewhere lai means negative, as in
Columns I and II, or decreasing, while tab means positive or increasing). For the 
structure of Column E see ACT, HAMA, and Aaboe-Henderson [1975]. It is Co
lumn E that guides the selection of the conjunctions included in the text: they 
are the ones at which E at a sign change has smaller absolute value, as already 
mentioned.

Column [0] contains the values ofV or W, whichever is appropriate, computed 
from Table 2. V is found in lines 7’ and 14’, just after 5-month intervals.

Column 1 contains corrections due to solar anomaly. It is based on Column J 
which complements G to form the time interval, less 29 days, from one to the next 
like syzygy. Column J vanishes on most of the fast arc and has the value

J = -0;57,3,45H
on most of the slow, with occasional transitional, always negative, values (see 
ACT p. 61). We find here in Column I the sum of the five or six appropriate J- 
values; where it is six the entry is the function called Z above and in Aaboe [1971]. 
We might point out that the last line should be blank, for the longitude and its 
four predecessors all belong to the fast arc (we are dealing with a five-month 
interval).

In Column II, the first where numbers are preserved, we find corrections C’ 
for variation of length of daylight. We have simply, and with sign,

C’(rc) =|(C(z?-l) - C(zz)).
The next column is the equivalent of Column K in the ephemerides and gives 

the sum of the entries in the preceding three columns so that for a six-month 
interval we have
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K(n)=W(n) + ZH+ C’(n), 
reduced modulo 611 to the smallest positive value. The entries are abbreviated to 
three digits.

The last preserved column, Column M, gives the moment of conjunctions, 
measured in large hours before sunset (su). It is derived by continued subtraction 
from an initial value of the entries in Column K. A comparison with modern 
tables shows that though the exlipse possibilities are correctly identified, the mo
ment of conjunction given in Column M is consistently 10 hours wrong.

To the right of Column M in Table 6 we have added values of K computed to 
four places for comparison with the text’s Column III. The deviations form no 
recognizable pattern.

4° Other Lunar Texts of System A

ACT No. 207cc augmented.
Contents: Procedure text for converting <h into G.
Photograph and Transcription : pp. 20-23. 
Description of Text:

BM 36438 ( = ACT No. 207cc) is joined by B.M. 37012, 37026, 37274, and 
37319 to form the lower part of a tablet with right, left, and bottom edges preser
ved.

Translation :
With but two exceptions the text adheres to a formular - the text employs two 

close variants — which freely translated says:
opposite a put b ; whatever exceeds a, until c, multiply by 3,22,30; multiply the result by 
d and add (subtract) the result to (from) b and put the result down.

Here a stands for a <T>-value in the standard table for converting O into G, b is 
the corresponding G-value, c is the neighbouring O-value to a, and d is the change 
in G over the interval from a to b.

The two exceptions (Obv. lines 6’ and 7’, and lines 12’ and 13’) both concern 
intervals in which G stays constant. Here the statement is:

Opposite a put b; until c add or subtract nothing.

Critical Apparatus :
Reverse line 9’: the text has as the second factor 1,34,48,5,53,20 for 1,34,48, 

53,20.
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Table 6. 
(pp. 16-18). 

(ACTNo. 54).

«X» rr» O fv. 2>-
*'O 

'■vT lz>" <T^ tx? «j" ^û' '*■?' r<* q" c\" tso" r-'-*'
v> >.fc rn <9 r* <v fy
rQV çy- Zfr-' P'-'' r"'~' c/ ’*>*' tf'*"'(>"'
i^.-' r/ ■<* Go" ■*-" r^' rcf o/ "■."'

^33333^313
& k is - 5J 

<5£ay!f ;■<$ K ÿÿy*’<$ 
^3 kn In'' Co 2S-' C"' «-n o" <bo" zs- ” rC Co*' 

£} £? rr> • ors CL13 <3j <2j CS <» . t

xiïï

3;}3*3^3^3*3s’3*
<23* 3 * *3*33 * 33 
ï3 2 ? ? ÿ - ï ?-» *

ï' 27 -' < s? tf r* s?' te' £ £ sf
Cf4' S r? ? £' ET«-' ** »' »•' '■» fi

]XI ta tel tel l’a H lä S ® H gi Igfls Isl
Izj xû V"-. tXJ ÇT'- <P —
«\r> r/> m rx-» <*<-> -J* 3-
Nr-( 'X

Irj C5



20 40:6

ACT No. 207
Obv.

Commentary :
1 his text confirms the standard rules for converting <t> into G by linear inter

polation in the O-G table (Table 1). The only feature of interest is the manner in 
which the interpolation is handled. Each interpolation involves a multiplication 
of the relevant increment of 4>, not by the usual single interpolation coefficient, 
but by two factors. The first is always 

where 17,46,40 is the difference AO between two consecutive listed values of O, 
and the other factor, varying from instance to instance, is AG, the difference 
between the two relevant tabulated values of G. Trivially,

3,22,30- A G
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Transcription :
Obverse
-2’ [ana tar-sa 1,57,58,8,53,20 tab 4,53,14,4,26,40 gar-zzzz]
-1’ [mim-ma sa al 1,57,58,8,53,20 tab dir en 1,58,15,55,33,20 tab]
0 [a-rå 3,22,30 DU-zzzzz sä DULT DU-hz a-rå 1,34,48,53,20 DU-zzzzz]
1’ [ki 4,53,14,4,26,40 tab-zzzzz gar-]zzzz
2’ [ana tar-sa 1,58,15,55,33,20 tab 4,54,48,53,20] gar-zzzz
3’ [mim-ma sä al 1,58,15,55,33,20] tab dir en 1,58,33,42,13,20 tab
4’ a-rå [3,22,30 DU-zzzzz jzz DUL+ DU-]hz a-rå 1,11,6,40 DU-zzzzz
5’ ki 4, [54,48,53,20] tab-zzzzz gar-zzzz
6’ ana tar-sa 1,58,33,42,13,20 tab 4,56 gar-zzzz
7’ en 1,58,37,2,13,20 tab tab u lal nu tuk
8’ ana tar-sa 1,58,37,2,13,20 tab 4,56 gar-zzzz
9’ mim-ma sä al 1,58,37,2,13,20 tab dir en 1,58,54,48,53,20 tab

10’ a-rå 3,22,[30] DU-zzzzz sä DULT DU-åzz a-rå 35,33,20 DU-zzzzz
11’ ki 4,56 tab-zzzzz gar-zzzz
12’ ana tar-sa 1,58,54,48,53,20 tab 4,56,35,33,20 gar-zzzz
13’ en 1,59,12,35,33,20 tab tab u lal nu tuk
14’ ana tar-sa 1,59,12,3[5],33,20 tab 4,56,35,33,20 gar-zzzz 

is the standard interpolation coefficient. For the linear stretch of G we are told 
(Rev. lines 20-21) to apply the two factors

3,22,30-2,45,55,33,20
which product, indeed, comes out to be 9,20 as it should. The second factor is 
readily recognized as zZ(4>), the monthly difference in <T>, but it is also, as we have 
learnt, the Sarosly difference in G, and so corresponds to 17,46,40, the Sarosly 
difference in O.

The preserved part of the text happens to begin with the smallest O-value on 
an ascending branch, takes us through the maximum of G, and ends with one 
of the two linear stretches of G. It is our guess that about half of the original tablet 
is lost so that only the middle of the text is preserved.



22 40:6

ACT No. 207 cT. . .
Rev.

As an illustration of the perverse situations that may arise - and often do - when 
one is forced to use fragmentary material we can point to Neugebauer's reconstruc
tion of the text on the basis of BM 36438 only. This fragment is the one at the 
lower right corner of the obverse and the upper right corner of the reverse (see 
the photograph), and whenever an interpolation coefficient is expected, either 
3,22,30 or aG is preserved, but not both. Neugebauer identified 3,22,30 as the 
reciprocal of AO, recognized the values of aG, and drew the conclusion, entirely 
reasonable in view of the evidence, that the interpolation scheme was wrong.
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Reverse
\.mim-[masä] al 1,59,12,[35,]33,20 tab dir en 1,59,30,22,13, [20 tab]
2. a-rå 3,22,30 DU-mzz sä DUL 4- DU-hz a-rå 35, 33, 20 DU-[mzz]
3. ta 4,56,35,33,20 [DU]L+ Dl -ma gar-an
4. ana tar-sa 1,59,30,22,13,20 [ta]b 4,56 gar-zzzz •
5. mim-ma sä al 1,59,30,22,13,20 t [ab dir] en 1,59,48,8,53,20 tab
6. a-rå 3,22,30 DU-mzz sä DULT DU-Åa a-rå 1,11,6,40 DU-mzz ta 4,56 DUL + 

DU -ma gar-zzzz]
7. ana tar-sa 1,59,48,8,53,20 tab 4,54,48,53,20 gar-zz/z mim-ma sa al
8. 1,59,48,8,53,20 tab dir en 2,.,5,55,33,20 a-rå 3,22,30 DU-mzz
9. sä DUL + DU-Æzz a-rå 1,34,48, {8, }53,20 DU- <ma> ta 4,54,48,53,20 [DUL + 

DU -ma gar-zz/z]
10. ana tar-sa 2,.,5,55,33,20 tab 4,53,14,4,26,40 gar-zzzz mim-[ma sa al]
11. [2,0,5,55]33,20 tab dir en 2,.,23,42,13,20 a-rå [3,22,30 DU-mzz sa]
12. [DUL+DU-âtz a-rå 1,52,35,]33,20 DU-mzz ta [4,53,14,4,26,40 DUL+ 

DU-mzz gar-zzzz]
13. [ana tar-sa 2,0,23,42,13,20] tab 4,51,21,28,53,20 gar-zzzz mim-ma [sä al]
14. [2,0,23,42,13,20 tab dir en] 2,.,41,28,53,20 a-rå 3,22,30 DU [-ma]
15. [Jå DUL+DU-Åzz a-rå 2,10,22,13,]20 DU-mzz ta 4,51,21,28,53,20 DUL+ 

DU- <ma> gav-an
16. [ana tar-sa 2,0,41,28,53,20] tab 4,49,11,6,40 gar-zzzz mim-ma sä al-la
17. [2,0,41,28,53,20 tab] dir en 2,.,59,15,33,20 a-rå 3,22,30 DU-mzz
18. [^ DUL+DU-hz a-rå 2,28,8,]53,20 DU-mzz ta 4,49,11,6,40 DUL+DU- 

mzz gar <-an >
19. [ana tar-sa 2,0,59,15,33,] 20 tab 4,46,42,57,46,40 gar-zzzz
20. [mzm-mzz sä al 2,0,59,15,33,] 20 tab dir en 2,13,8,8,53,20 tab
21. [a-rå 3,22,30 DU-mzz sä DUL4- DU-Åzz] a-rå 2,45,55,33,20
22. [DU-mzz ta 4,46,42,57,46,40 DUL+ DU-mzz gar-an]

BM 40094, Reversed ACT No. 128
Contents: ]K15 Mn A1; Y15 C[, Mx, P3 for Philip Arrhidaeus 6,VI to 7,XII 
(= S.E. -6,VI to -5,XII).
Transcription : Table 7, p. 27. 
Photograph : p. 25.
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Description of Text
The text ACT No. 128 (BM 45662) is a fragment with only one side, and part 
of lower and right edge preserved. It now joins the reverse of BM 40094 so that 
the mended break runs through Columns V and VI of the transcription. Part of 
Column VIII (P3) is on the right edge (not shown in the photograph). Upper 
and lower edges ofBM 40094 are preserved, but parts of its surface, particularly 
the first five lines of Reverse, Column III, are rather badly eroded. We believe 
that the present text is a copy of an ill-preserved exemplar, for it contains an 
unusual number of isolated errors without consequence readily committed when 
one copies a poor text (e.g., 8 for 5, and 5 for 8).

We have not reproduced a copy of the obverse of BM 40094, for the join adds 
nothing to this side, yet we have retained and extended the numbering of columns 
from Aaboe [1969] though Column I (K) is not preserved on the reverse of this 
fragment. For the contents of the obverse we refer to Aaboe's publication with 
corrections given below.

The scribe’s ductus is such that it is often difficult to distinguish between his 
“tab,” “20,” and where denotes the separation mark of two diagonal 
wedges used for zero.

Critical Apparatus (in part excerpted from Aaboe [1969]).
Rev. 11,7’: [2,1,] 1 is also possible.
Rev. 11,8: [4],57,A4 (or 45) should be 4,57,46 (cf. VIII,8).
Rev. 11,14: 1,49,5 should be 1,59,55 (cf. VII, 14), isolated error.
Rev. Ill,7: 1,33,25,53,55, ... should be 1,33,25,53,56",6,40, an error without 

consequence.
Rev. Ill,8: 7,23,36,45,47,13,20 should be 2,23,36,45,47,13,20, isolated error. 
Rev. 111,13: 3,29,11,6",40 should be 3,29,11,40, error without consequence.
Rev. 111,18: the A-value should be denoted lai, isolated error.

Col.IV: Except in the first six lines of the obverse, the values are denoted
lai instead of tab, perhaps in imitation of Col.J.

Rev. line 5: Col. IV,5 is empty; the Y-valuc should be 8,14,32,30 tab. In Col.
V, 5 the text has 8,12,35,30 tab; this should be 3,35,55 tab. In Col.
VI, 5 we read 3,36,45 with the final 5 damaged; this should be 
0 ;7,29 tab. It is likely that the scribe copied from a text which, like 
his copy, occasionally ran the columns together, and in which line 
5 of the reverse was damaged; and that he copied what he saw in
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BM 40094, Rev.+ACT No. 128

The following errors in Aaboe's transcription and restoration of the obverse should 
be noted:

the correct line, but shifted one column to the right. The join adds 
no new information about this line.

Rev. V,5: see note to Rev. line 5.
Rev. V,16: 
Rev. VI,3:
Rev. VI,5:
Rev. VI, 10:

5,6,24 should be 2,6,24, isolated error, 
reading uncertain.
see note to Rev. line 5.
the best, but far from secure reading is 4,12,23; the correct value 
4,6,13 is not consistent with the traces.

Obv. IV,5,6: these two lines should not be blank, but should both give 21,2,59 
tab.

Obv. V,5: 1,[19,30 lai] should be 1,[16 lai].
Obv. V,9: 1,53,4[0 lai] should be 1,53,3[6 lai].
Obv. VI,5: [3,31,49 tab] should be [3,52,56 tab].
Obv. VI,6 : [2,45,38 tab] should be [3,6,41 tab].
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Commentary
When BM 40094 was first published it presented several singular features: 

it was the oldest datable lunar ephemeris, and it was the only lunar ephemeris 
that month by month gave the function A and its corrections, Y and c’, for solar 
anomaly and change of length of daylight. Only here was found the column k, 
the sum of A, Y, and c’, which represents the length of a normal year, except for 
an integral number of days, and adjusted to a variable sunset epoch. To these 
unique traits we now add one more: our text is the only lunar ephemeris that 
contains two nearly identical, but differently computed columns M (giving the 
moment of conjunction in large hours before sunset).

ACT No. 128 complements Column K of BM 40094 and adds the second 
Column M and a Column P3 which gives date of the last visibility of the Moon 
and the time interval from moonrise to sunrise on that morning. The inclusion 
of Column P3 and the absence of a Column PT (first visibility) raise a problem we 
shall return to briefly below.

We are convinced that Column VII, the second Column M, is computed from 
Column VI (K) and an initial value in 12-line steps thus:

M(n) = M(n-12)-K(ra).
The text provides only one instance where this can be checked:

VII,6 : M(6) = [5,26,3]6su
-VI, 18:-K( 18) = 5, 1
VII,18: M(18) = 5,21,35 su 

where, alas, only the last digit of VII,6 is preserved.
Aaboe surmised in 1969 that a main purpose of A and its corrections is to pro

vide a much needed control for Column M - a conglomerate of quite unrelated 
parts which is difficult to check with rules of the common kind — and this appears 
confirmed by the join.

Finally, to find the dates in Column VIII (P3) and, for that matter, in Column 
II (M) - dates are omitted in the second Column M — we must know the charac
ter, full or hollow, of the relevant month, and this we learn from Column P1; 
which is not in our text. Thus our text is not self-contained, and this information 
must have been drawn from elsewhere. It is at first sight welcome to have our 
evidence of the poorly understod visibility columns increased by the entries in 
Column P3. This much seems clear, however, that it was very poorly computed - 
in lines 12, 15, and 16 even the date is wrong - so it looks at present as if this join 
offers little hope of advancing our understanding of how the visibility columns 
were constructed, and we shall here refrain from any further analysis of Column
VIII.
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Neugebauer assigned tentatively ACT No. 128 to System B, in error, it now 
appears. The absence of dates in its Column M, and of the usual difference co
lumn (K), were indeed puzzling out of the context provided by the join with 
BM 40094.

ACT No. 3b and BM 37375 (80-6-17,1132)
Contents :
Obverse: Cols. C1,K1,M1,P1,P3; Reverse: Cols. P213P2 2,P23,P24 forpartof S.E. 
2,22.
Transcription: Table 8.
Description of Text :

Though too much clay is missing for a physical join, there can be no doubt 
that these two fragments derive from the same tablet. Clay, hand, size of writing, 
and shape and dimensions of the lower edge all agree. Further, both fragments 
have an intercalary month XII2 in the last line of the obverse, and the moments 
oflast visibility in BM 37375 all precede very' nicely the corresponding moments 
of conjunction in No. 3b. The missing sliver contained most of the column of first 
visibility on its obverse, and the middle section of the me-column on its reverse.

It is very fortunate that No. 3b could be dated, for without a date BM 37375 
would be quite uninteresting. As it is now, it adds new evidence about the diffi
cult and imperfectly understood visibility columns. For a restoration of most of the 
missing columns we refer to the partial duplicate ACT No. 3a.
Critical Apparatus.
Obv. line 1’: illegible traces of a second choice remain on the edge; the traces 

following the 11 in Col. V are conformal with 27 1 1,33 kur[ as 
well as 27 11 kur 26[.

Rev. IV,4: 20 gar could be read 24.

ACT No. 55 (BM 34083 (Sp. 181))
Contents: Columns T15B15 and VI\ for solar eclipse possibilities for at least 216 
years, including S.E. 137 to 343.

The text turns from obv. to rev. about the right edge, like a page of 
a book, which is unusual for Babylon.
Copy: EBAT No. 49.
Transcription : Table 9 (one side).
Description of Text:

Neugebauer restored the text in ACT under the assumption that it dealt with 
solar eclipses on its “obverse” and lunar eclipses on its “reverse” which is badly



A
C

T N
o. S

T'Zw
.

40:6 29

Table 9.

O'

b* *> s» „bo A° J*'' -’

_3>) .S' Jc i- .c 5v 30 ~c _-c 303-0 S)
~c z; Z: x> 'w \> JJ M •£ S" w u \

./■* 6s . o „o <x> b-> bj „ 0s
"— •"- ~C -C. ~-C '
Cq V) V) tf) trxj V) <z>
* di Q di ® H £ IS £ }} |}> ^

tn Ch) è" OQ
Ri El R XI K R3 p| È) IS) |g| 

§-x 

Table 8.



30 40:6

preserved. We shall suggest that the identification of obverse and reverse is wrong 
and that Side A, as we rename what Neugebauer called “reverse,” presents solar 
eclipses preceding in time those given on Side B (ACT’s “obverse”); Neugebauer s 
assumption that Side A concerned lunar eclipses led to severe difficulties. Incident
ally, Pinches’s original copy sheet agrees with our identification of obverse and 
reverse.4

4. Wc arc indebted to Professor Neugebauer for having placed at our disposal his photographs of the 
relevant ACT texts as well as copies of parts of Strassmaier's notebooks, with his transcription of Strass- 
maier's German shorthand, and of Pinches's original copy sheets.

We have nothing to change in Neugebauer s treatment of Side B; in fact, we shall 
use the peculiar rules he extracted from this side in our proposed restoration of 
Side A. Further, we shall rely heavily on Pinches’s hand copy (LBAT No. 49) of 
this side.

The text was first noticed by Strassmaier (in June 1891, according to his note
book) and he says about the “reverse,” as he also called our Side A: “Rückseite 
sind nur Spuren von 3 Kolumnen so: [copy of three lines follow] u.s.w. ; es ist nichts 
sicher, gu sehr beschädigt.” In Col. II, 5’ lie read “ziz 5 äb,” a reading Neugebauer 
followed, though Pinches here read “ziz 7 àb.” For the year numbers in lines 2’ 
and 4’ Strassmaier and Pinches both give 2,37 and 2,38, while Aeugebauer has 5,37 
and 5,38. The photograph used by Neugebauer, and taken about 1950, supports 
the alternate readings equally well or ill and shows a text so damaged that we 
doubt that a collation would be of much help - in fact, we had not yet grown 
interested in the problems raised by this text when Aaboe collated some of the other 
tablets discussed here.

We mention these things to point to the fragility of the evidence. On the other 
hand, we have good reasons to trust the acuity of the remarkable T. G. Pinches 
when he had a difficult text in hand.

Critical Apparatus
The numbers given in Columns I and III of Table 9 are computed by us; any 

deviation from Pinches’s copy is noted below.
I, 3’ : [31,1]8,37 : Pinches read 33 in the last place.
II, 5’: 7àb: so Pinches; Strassmaier and Neugebauer read 5 åb (sec above).
II, 6’: kin: Pinches gives a damaged dir; Neugebauer read su.
II, 7’: ab should be ziz. This error affects all subsequent dates in the text, in

cluding those of Side B; henceforth each month name is one too early.
III, 3’: 15,[11,1 5] : Pinches read 13 in the first place, with bottom of the 3 damaged.
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III, 5’ : 5, [20] : Pinches read a damaged 8 in the first place.
Ill, 6: 24,[16]: Pinches read 26 in the first place with the top of the 6 damaged. 
III. 7’: 24,[16]: Pinches read 25 with damaged 5.

Commentary
We shall first briefly introduce the “eclipse magnitude” T which plays an 

essential role in this text. It is a simple transform of lunar latitude, E, usually 
defined only at syzygies where exlipse possibilities are announced, and computed
according to the rule

T = 17 ;24

p
4- near the ascending node

— -4 near the descending node.
6

T is measured in fingers (su-si) while E’s units are barley corn (se) — in a four
digit value of E the first two indicate the integral number of se. Closely related 
to T is T’ which is defined for all syzygies. T’ is a zig-zag function of extrema 

M = —m = 2,0 ,
but of differences that depend on longitude (for details see ACT, Aahoe-Henderson 
[1975], or HAMA). Near the nodes T and T’ agree but for sign:

T’ near ascending node

-T’ near descending node.
We can now state the results of Neugebauer's analysis of Side B. He proposed 

that it gave year and month, longitude, and T for solar eclipse possibilities, 
arranged in columns of 38 lines (corresponding to one Saros) each, selected 
according to an unusual principle, but with an error of one month in the dates.

Normally we find, as mentioned, eclipse possibilities selected on the basis of 
Column E, lunar latitude: they are the syzygies at which lunar latitude, when 
listed monthly, near a sign change has smaller absolute value. Here, however, the 
rule is that one selects the syzygy at which T for the first time becomes positive or, 
what is the same thing, the syzygy just after T’ has changed sign. The E-rule and 
the T-rule, as we call them, agree often, but not always.

We have reconstructed Side A on the basis of the T-rule. This rule implies 
an occasional, but very rare interval of 7 months, flanked by two 5-month in
tervals, between consecutive “eclipse possibilities” (which the more correct 
E-rule also does, but at different syzygies). The last time this happens during the 
historically relevant period is at the conjunctions S.E. 138 VI, 138 XI, 139 VI, 
and 139 XI. These are covered in our text, and Pinches read 7 åb (7 months) 
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where we would normally expect 5 åb. It also appears that it is in this part of the 
text that the error in month names begins. The month names se (XII), kin (VI), 
zi'z (XI) in lines 3’, 4’, ancl 5’ are clear and correct. On line 6’ Pinches copies a 
damaged dir (XII2) which makes no sense, but here one should probably read 
kin (VI) and thus obtain the 7-month interval. In line 7’ we expect ziz (XI), but 
find ab (X), and from there onward all months arc one too early. If Neugebauer s 
reading of su (IV) in line 6’ is followed we would have two consecutive 5-month 
intervals followed by 6-month intervals, which is also a possible reconstruction.

That the T-rule is employed is shown by line 6' where we find 2,39 kin (VI) 
and line 13’ where we find apin (VIII). In both cases the E-rule would select the 
previous conjunction (we are allowing for the systematic error in the latter 
instance).

The T-rule makes little astronomical sense as a guide for choosing eclipse 
possibilities. It has in practice the effect of advancing the nodes by 2; 17° on the 
average, which is gross compared with the error in Column E (about in S.E. 
200; see Aaboe-Henderson [1975]). It may, however, be we who are wrong when 
we identify our tablet as an eclipse text, for it could equally well be an auxiliary 
table simply presenting a rational selection of corresponding values of T, B, and 
4’ for a purpose we cannot quite see. Indeed, the term hab can mean “eclipse 
magnitude” or “positive value ofT” as well as “eclipse warning” (see Excursus: 
The Term hab-rat, ACT p. 197).

ACT No. 207f(KM 42685)
Contents: Column <I>1 tabulated at 12-month intervals, very likely beginning S.E. 
200, III.
Transcription: Table 10. 
Photograph: ACT Plate 243.

Critical Apparatus
line 3’: the 5 is fairly clear, and 0 is certainly excluded, so the numbers arc 
values of (1>I, not <I\.
line 11’: Neugebauer read 42,14. The 42 could be 52 in which case all dates 
are advanced 265 months.

Commentary
The preserved endings agree with the endings in Column O, in ACT No. 55, 

Reverse, lines 8’-18’ (restored until line 10’ in Aaboe [1971]). Dating is unique if 
42 in line 11’ is taken seriously, otherwise see Critical Apparatus.
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Table 10. LT^l *,

[2, 3, âV«/261^ feii] 
[ loi] 

[2, 3,l]SZ2/3,2Z> lai 
[2 g,37],S^7o lai
tz',/7, 01,33 Zo loi 
12,17 7(,]2X,S3,Zo 
L2,‘1,23133,20 
C2,7,ll'l7.7CYo toi 
f/$X,3?J>Z/3,2û tab 
L2, 2. qføs&zo WJ 
[2,7]lV-?2^¥o W]

ACT Ko. 2o7 f

ACT Nos. 22 and 23
We finally present in Tables 11 and 12 reconstructions of ACT Nos. 22 and 23 
which were dated from preserved or reconstructed sections of Column K. Inci
dentally, ACT No. 20 was similarly dated and reconstructed, and published in 
Aaboe [1974].5 Our dating of No. 22 - unique within the relevant period like the 
other datings - confirms Neugebauer's remark (ACT p. 104) that its Column K2 
is a close parallel to that in No. 15.

5. Nos. 20 and 23 were first dated in 1972 with the kind help of Mr. C. Anagnostakis.

Appendix

BM 37021 (80-6-17,765)
Just after our manuscript was submitted we managed to date the text BM 

37021. Since it presents two points of particular interest, we shall briefly describe 
it and its contents here, while the text will be published fully later in another 
context.

BM 37021 is from the Babylon archive and is a fragment measuring 7.5 cm by 
14 cm. Upper and lower, but no other edges are preserved. When the tablet was 
first seen by Aaboe in 1963 it was quite illegible, but after it was baked and 
cleaned a few signs could be made out, though its surface remains in a wretched 
state. The upper edge carries a colophon stating that the text was copied from a 
wax tablet.

The text has 10 lines to a side and presents in pairs of columns, that continue 
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from the Obverse across the lower edge to the Reverse, corresponding values of 
and M1 for a long sequence of unidentified months. Indeed, of Column 

only the hours are given, denoted su (before sunset). The term BAL indicates 
when an extra day has been included as 6H in Column M15 a useful warning when 
one computes the dates of Column Mj (for which Column Pj is needed). BAL 
occurs in the lines immediately after the borrowing of a whole day.

Of Column 1 remain only the endings of M1? mostly su and su BAL, but we 
could date the three values of Kx preserved in Column II, lines 2, 3, and 4 uniquely 
to S.E. 46, months X, XI, and XI1 with our computer-generated tables. The 
remaining traces of Revalues are, with one exception, consistent with our re- 
computation, and the dating is secure.

Column I, line 1, would then correspond to S.E. 45* month II, and we believe 
this to be the beginning of the text. There is evidence of entries for 60 months, 
and the tablet’s curvature suggests that when unbroken it covered 100 months, 
or some 8 years.

Two features of the text are noteworthy: its early date and the fact that it is 
an auxiliary table of System A giving selected columns of monthly values, very 
likely for the purpose of constructing ephemerides. Such auxiliary tables of Sy
stem B from Uruk abound, but so far the only text of this sort of System A was 
ACT No. 70. This text from Babylon is also the oldest dated lunar text in ACT 
(S.E. 49 to 60), but otherwise the lunar texts of System A are on the whole younger 
than those of System B. We do not know how much of this apparent trend is due 
to accidents of the spade, scientific and otherwise, but the early dates of the 
contents of BM 40094T ACT No. 128 (see above) and of the present text will 
surely have to be taken into account in attempts at reconstructing the relation
ship between the lunar Systems A and B.
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Synopsis :
The crystal-blocking technique has been applied to study the time development of fission induced 
by heavy-ion (12C, 16O, 19F) bombardment of tungsten (and gold). Thin single crystals have been 
used as targets and the blocking patterns have been recorded with 2-dimensional position-sensitive 
detectors, which are thin enough (~20^m) to separate fission fragments from scattered projectiles 
with the same energy. The blocking dips are analyzed as superpositions of two components, cor
responding to short and long lifetimes, and the information extracted is the relative amount of fission 
with lifetimes r 2: 10-16 sec. In this analysis, the short-lifetime component is represented by a blocking 
dip for elastic scattering at lower bombarding energy, which is scaled to the average energy and 
nuclear charge of fission fragments. The long-lifetime component is represented by a calculated dip. 
The dependence on bombarding energy of the fraction of fission with long-lifetime has been studied 
systematically for 12C and 16O bombardment of tungsten in the energy range 80 MeV to 115 MeV. In 
agreement with expectations based on qualitative considerations, the long-lifetime component initi
ally increases with energy, reaching a maximum of ~ 20%, and then decreases to ~ 5% at the 
highest energy. For 16O on W supplementary measurements have been made of the fission cross 
section for the different W isotopes and of the angular distribution of fission fragments. The results 
are used together with the lifetime data to determine parameters in a statistical-model calculation 
of the fission process, which follows the distribution in spin and energy of the fissioning nuclei through 
the neutron-evaporation cascade. All the experimental results are reproduced with a consistent set 
of parameter values, and the combination of experimental data turns out to be very effective in 
constraining the variation of these parameters. In particular, the information obtained from the 
lifetime measurements on the distributio n of fission over stages in the neutron evaporation cascade 
is important for the interpretation of the measurement of fission-fragment anisotropy, which depends 
sensitively on the temperature of the fissioning nucleus.
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1. Introduction
The blocking lifetime technique for measurement of nuclear lifetimes in the range 
(< 10“15 s), where nucleon emission dominates the decay of excited nuclei, has 
been applied to study a variety of processes 1,z. It is basically a time-of-flight 
technique which utilizes the fact that displacements of target atoms from lattice 
sites by more than ~ 0. 1 Å can be distinguished by a filling-in of the blocking 
dip in yield of emitted, charged particles. The method was first established about 
ten years ago, and from the beginning, investigations of nuclear fission played 
an important role 3-5. Systematic studies of neutron-induced fission of uranium 
isotopes have shown that for low excitation energies E*, the lifetime decreases 
with excitation energy to r ~ 10-16 s for E* ~ 10 MeV. For higher energies, the 
lifetime becomes too short to be measured with the technique, and only an 
upper limit can be established (e.g., r< 10“17 s for helium-induced fission of 
238 U at E* =20 MeV5).

An important exception to this behaviour occurs at projectile energies close 
to threshold for higher-chance fission. It has been observed for both proton 
bombardment4 and neutron bombardment9 of 238 U that just above threshold for 
fission after emission of one neutron (second-chance fission), the blocking dips 
for fission fragments are filled-in by a slow fission component. Similarly, at 
higher energies, the fission lifetime would be expected to depend strongly on the 
average number of neutrons evaporated prior to fission. In fact, only if this number 
is small (<! 1) can the process be usefully characterized by a single lifetime. This 
problem is crucial for the interpretation of blocking measurements of fission 
induced by heavy-ion bombardement. Since the heavy ion must have sufficient 
energy to overcome the Coulomb barrier, the excitation energy will always be 
high enough to allow evaporation of several neutrons from the compound nucleus.

The pioneering measurements of lifetimes for heavy-ion induced fission were 
made by Karamyan and co-workers 10,11. They measured blocking patterns for 
fission induced by bombardment of tantalum and tungsten crystals with heavy 
ions (boron, carbon, oxygen, neon, and phosphorus) and identified significant 
lifetime effects for excitation energies as high as 120 MeV. By assuming that the 
number of neutrons emitted prior to fission was small, they interpreted these 
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effects as evidence for a surprisingly long lifetime, 10-17 — ICT18 s, of the initially 
formed nucleus as compared to expected lifetimes of 10~19 — 10—20 sec. This im
plies that the nuclear temperature is much lower at high excitation energy than 
that calculated from a Fermi-gas model with the usual parameter values and, 
correspondingly, that the level density is much higher than that estimated from 
such a calculation (see, for example, the discussion by Karamyan et al.2).

The present study was stimulated by and is an extension of the work of 
Karamyan and co-workers. By the use of thin crystal targets, improved angular 
resolution and statistics, and two-dimensional, position-sensitive semiconductor 
systems which allow detection of both fission fragments and elastically scattered 
projectiles, it was felt that additional information on the time evolution of the 
decay could be obtained. In a preliminary report12, it was shown that the new 
results were inconsistent with an interpretation involving delayed decay of the 
initial compound nucleus. A comparison of blocking dips for fission fragments 
with blocking dips for elastically scattered ions revealed large effects of com- 
pound-nucleus recoil, but a detailed analysis of the shape of these dips showed 
that the filling-in must be due to a fission component with very long lifetime, 
T 10~16s (with most of the fission occurring within a time too short to be meas
ured, t< 10“17 s). The long lifetime was interpreted as fission after evaporation 
of several neutrons, and this interpretation was substantiated by the calculations 
of Hagelund and Jensen13, which were prompted by these measurements. Since 
then, the calculations have been improved14 mainly by a modification of the 
analytical level-density expression15. We shall present some of the new results 
and compare them with our data.

The importance of higher-chance fission is also indicated by other types of 
measurements, e.g., of the angular distribution of fission fragments16. It is a 
simple consequence of the fact that for the systems studied, the neutron-binding 
energy Bn and the fission barrier Bf are comparable in magnitude. In fig. 1, taken 
from Huizenga and Vandenbosch17, the ratio TJ/Zj, calculated from a Fermi-gas 
model, is shown as a function of excitation energy for different relative magnitudes 
of Bn and Bf. The energy dependence is governed mainly by the ratio of Boltz
mann factors, exp ((Bf — Bn)/T), where T is the nuclear temperature (T oc E1/2). 
For Bn~ Bf, this ratio is almost constant, and fission after evaporation of one or 
more neutrons will then be as important as first-chance fission.

On the other hand, the fission yield is dominated by first-chance fission in 
both the limits Bf >> Bn and Bf <<£ Bn; in the former limit, the fission probability 
decreases rapidly with decreasing excitation energy, and in the latter limit, very 
few compound nuclei survive first-chance fission. Since the fission barrier depends 
strongly on the fissionability parameter Z2/A, the variation between these limits 
can be investigated by a variation of the target-projectile combination.
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Fig. 1 : The dependence of rn/rt on excitation 
energy for different values of (Bf — Bn). Level
density parameters a, and an were assumed equal 
to 25 MeV-1 and Bn equal to 6 MeV. The figure 
is taken from ref. 17, with a small correction of 
notation (E, —» Bf).

For a fixed value of Z2/A, the effective fission barrier may be varied by chang
ing the bombarding energy and thereby the average angular momentum of the 
compound nuclei. For the very large values of angular momentum attained in 
heavy-ion reactions, the rotational energy of the compound nucleus may be 
comparable to the fission barrier. At the saddle point for fission, the moment of 
inertia is increased by the deformation, and the fission barrier is effectively reduced 
by the corresponding change in rotational energy, Bfcfi = Bf — JErot. The different 
curves in fig. 1 may therefore also represent different values of angular momentum.

IfBt >Bn for I = 0, we may then expect the following variation with bombard
ing energy: Close to the fission threshold, the yield is dominated by first-chance 
fission. At somewhat higher energies, the effective fission barrier Bf^, correspond
ing to a larger average angular momentum, is reduced to B^ ~ Bn and the con
tribution from late-stage fission is large. For even higher bombarding energies, 
Bfff< Bn, and the fission yield is again dominated by the contribution from the 
first stages of the evaporation chain.

This picture is, of course, greatly simplified. The change in with neutron 
evaporation is not caused by the decrease in temperature alone; other effects 
such as changes in shell corrections and in the neutron binding energy are also 
important, but they do not change the qualitative conclusion concerning the 
energy dependence of the contribution from late-stage fission.

In the present report, we give a detailed account of the experimental inves
tigation. Both from a technical and analytical point of view, it represents a new 
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development of the crystal-blocking technique. The interpretation of the results 
in terms of a multi-component time distribution has been established by a large 
number of measurements with different target thickness, target temperature, 
crystal orientation, and varying projectile energy. The variation of the magnitude 
of the long-lifetime component with projectile energy has been measured for 
oxygen on tungsten in the energy range from 90 to 115 MeV and for carbon on 
tungsten from 80 to 87 MeV. The results are in qualitative agreement with the 
simple predictions discussed above.

Detailed numerical calculations of the type introduced by Hagelund and 
Jensen13 have been performed. In order to determine some of the parameters in 
the calculations, we have made systematic measurements of fission cross sections 
and also of the angular distribution of fission fragments for all four tungsten 
isotopes (182-183-184-186 W) bombarded by 16O in the energy range 90-108 MeV. 
The combination of such different types of information is found to reduce con
siderably the ambiguity in selection of parameters for the calculations; in par
ticular, the calculations illustrate the value of the new type of information ob
tained from blocking measurements.

2. Experimental Details
2.1 Equipment
A plan view of the experimental apparatus is shown in fig. 2. Ion beams from the 
Chalk River MP tandem accelerator entered the target chamber through col
limators to produce a beam spot on the target of <0.5-mm diameter. For the 
target-detector distances used (5; 105 mm), this resulted in sufficient spatial 
resolution in the blocking patterns for all target tilt angles and detector angles.

Single-crystal targets (see sec. 2.2) were mounted in a two-axis goniometer 
which allowed translation of the target in its own x and y frame while preserving 
the crystal orientation, beam-spot size, and beam-spot position with respect to 
the detectors. The target-crystal assembly was surrounded by a metal shroud, 
which was liquid nitrogen cooled to inhibit contamination of the crystal surface. 
The crystals could also be cooled by heat transfer through a copper braid attached 
to the rear of the sample holder.

The target chamber and shroud design allowed the detector assemblies to be 
located in the horizontal plane at any of four predetermined angular settings, viz. 
— 100°, +130°, and 160-170° on either side of the beam (see fig. 2). Hence, 
detector pairs could be set to subtend angles of 70° or 90° at the target when we 
wished to record, simultaneously, two blocking patterns along axial directions 
of the same symmetry, viz. < 111 > or < 100 >.
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Fig. 2: Plane view of the 
experimental apparatus. 
The detectors were placed 
~ 105 mm from the crystal. 
A detector system, 
consisting of a position
sensitive front detector and 
a back detector, is shown 
separately. The orientation 
of the crystal corresponds 
to a blocking angular- 
distribution measurement 
around a < 111 > axial 
direction at 130° to the 
beam.

DETECTOR SYSTEM

2.2 Crystals
In contrast to other fission-lifetime measurements based on the blocking technique, 
thin crystals (^4000Å) were used in the present experiments, alleviating un
certainties that arise from depth-dependent cross sections and dechanneling 
effects. The tungsten crystals were grown epitaxially on A12O3 or MgO, and the 
gold crystals on NaCl. The use of low-Z-material substrates ensured that there 
were no troublesome background radiations during heavy-ion bombardment and, 
consequently, there was no need to remove the crystals from their backings.

Crystal thicknesses were measured by backscattering of 2-MeV He+ or H+ 
beams, and the crystal quality was determined by measuring the minimum 
yield /min for 2-MeV He+ ions incident along a low-index axis. Results for the 
four tungsten crystals used are shown in table 1. Also shown are the /min values 
obtained from 40-MeV 16O-ion blocking dips. The He+-beam analyses made use 
of a surface-barrier detector of 15 keV resolution, the /rnin values being obtained
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Table 1. Properties of the W crystals used in the blocking lifetime measurements. The thickness t, 
the axis normal to the crystal surface, and the minium yields / are given. The /He values were 
determined as near-surface for channeling of 2.0 MeV 4He particles while the /o values were deter
mined from blocking measurements of 40 MeV elastically scattered 16O ions and are averaged over 
the crystal thickness.

No. t[Â] Axis Ztle Zo Comment

W1 1130 < 110 > ~ 5°/J /o 12% ~15° off < 110 >
W2 3800 < 111 > 1% 5% twinned
W3 3350 < 111 > 2% 9%
W4 570 < 111 > 2% 9%

from near-surface scattering (see fig. 3). With the oxygen beam, the /min values 
were determined from spectra recorded with the modest energy resolution of 
the detector DI (see sec. 2.4) and therefore represent averages over the entire 
crystal thickness. Since depth discrimination was not possible in the fission 
measurement, these depth-averaged /min values are the more relevant ones for 
comparison with blocking of fission fragments.

Fig. 3: Spectrum of back- 
scattered 4 He+ ions from the 
W crystal W3. The closed 
circles correspond to the 
case where the beam was 
incident in a non-channeling 
direction in the crystal, 
and the open circles corre
spond to alignment of a 
< 111 > axis with the beam 
direction. The two spectra 
were recorded for the same 
number of incident beam 
particles.
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The crystals described in table 1 represent a large variation in thickness, 
orientation, and quality. The use of such different targets provided an important 
test of the reproducibility of the observed lifetime effects.

2.3 Crystal Temperature and Radiation Damage
At room temperature, the blocking patterns for 16O ions elastically scattered from 
gold crystals were rather poor, but when the crystals were cooled to ~ 100 K, 
the elastic blocking patters had much lower minimum yields. Consequently, all 
fission-fragment blocking measurements with gold were made with the crystals 
cooled to 100 K. For the tungsten crystals, the zmin values for elastically scattered 
16O ions were very good (~8-10%) at room temperature. Since radiation damage 
is expected to be worse at lower temperatures, all tungsten measurements except 
one were made at room temperature.

Radiation-damage effects on the blocking measurement were avoided by 
translating the crystal at regular intervals. After each 50 of accumulated 
heavy-ion charge, the crystal was translated 0.5 mm, the diameter of the beam 
as defined by the collimators. This amount of charge was chosen on the basis 
of measurement with 40-MeV oxygen-ion bombardment, which showed radia
tion-damage effects in cold gold crystals after 200 //C of accumulated charge. 
(No distinction is made here between primary radiation damage in the metal 
film and crystal damage or distortion resulting from radiation damage in the 
substrate.) For each target position, data accumulation was separated with 
appropriate markers on the magnetic tape used for data acquisition so that each 
segment could be evaluated separately for crystal degradation. No evidence of 
radiation damage was observed.

2.4 Detectors
The measurements were made using two specially fabricated silicon-detector 
systems18, denoted DI and D2 in fig. 2. As shown in the lower part of the figure 
each system consisted of two planar diodes; the front counter had an active area of 
14xl4mm2and was ~20/tm thick.This thickness was sufficient to stop fission frag
ments but small enough to allow light energetic particles, e.g. elastically scattered 
16O, to pass through and be detected in the large-area detector at the back, thus 
allowing discrimination between fission fragments and the light particles. The 
front counter was position sensitive in both the x and the y directions18. Three 
signals were obtained from this detector, consisting of the products Ex, E-y, 
and E • ( 1 — x). Electronic processing of these three pulses gave signals proportional 
to energy, x position, and y position. Each signal was encoded by an ADC with
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Fig. 4: Photograph of the 
on-line computer display for 
40-MeV 16O bombardment 
of a W< 111 > crystal. The 
black dots in the upper 
right 2-d spectrum corre
spond to (x,y) channels 
with a number of counts 
greater than a preselected 
minimum value. In the 
lower left corner, a y scan 
through the centre of the 
axial blocking dip is shown ; 
the x value is indicated by a 
black dot on the x axis.

1 28

40 MeV l60 SCATTERED

FROM W <111 >

I
Y

a conversion range of 256 channels, and the data were written event by event on 
magnetic tape by the Chalk River PDP-1 computer. A preliminary analysis, in 
the form of an energy spectrum and a 64 X 64 two-dimensional position spectrum, 
was made on-line for each detector system. Fig. 4 shows a typical two-dimensional 
blocking pattern for 40-MeV 16O elastically scattered from a tungsten crystal. 
The axial and planar minima for this < 111 > direction are clearly visible in the 
two-dimensional display in the upper right portion of the figure. In the lower 
left corner is a plot of intensity in the y direction, through the center of the axial 
dip, for the x position indicated by the dot on the x axis.

The main requirements on the detection system are that it should be able to 
discriminate fission fragments from all background radiation and to record two- 
dimensional blocking patterns with high angular resolution. It is possible to 
satisfy these requirements with the plastic or glass-plate track detectors used in 
previous blocking-technique measurements of fission lifetimes10,11, but the exper
iment control provided by the on-line display and the accessibility of the data for 
analysis are very important advantages of the present technique.

3. Measurements and Data Reduction
3.1 Method of Measurement
Blocking patterns of fission fragments were measured with gold crystals for 
lbO-ion bombarding energies of 86 and 90 MeV and with tungsten crystals for 
12C-ion bombarding energies of 80, 82.5, 85, and 87 MeV, for 16O-ion bombarding 
energies of 90, 94, 96, 97, 102, 108, and 115 MeV, and for 19F-ion bombarding 
energies of 95 and 108 MeV. Measurements were also made for elastic scattering 
of 25-MeV 12C and 25- and 40-MeV 16O-ions.
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The tungsten crystal used in the initial measurements (Wl) was grown 
epitaxially with a < 110 > axis nearly perpendicular to its surface. With this axis 
at 45° to the incident beam, blocking patterns were simultaneously measured for 
fission-fragment emission along the < 111 > axes at +170° and at +100° to the 
incident-beam direction. In this geometry, the incident-beam direction, and 
therefore the compound-nucleus recoil direction, was parallel to a {110} plane. 
In order to avoid the reduction of yield resulting from channeling of the incident 
ions, the crystal was tilted slightly (one degree) from the planar direction. Measure
ments were also made using the same crystal for simultaneous blocking along two 
< 100 > axial directions. In this case, one detector was located at +100° and the 
other at —170° to the incident beam, and the recoil was nearly parallel to a {100} 
planar direction. As mentioned earlier, the other tungsten crystals used were 
oriented with a < 111 > axis normal to the surface. For these crystals, blocking 
measurements were made sequentially for recoil at 15° and 50° to the < 111 > axis 
by orienting the crystal so that the < 111 > surface normal was directed first at 
one and then at the other detector, located at the appropriate scattering angles. 
This method precludes simultaneous measurements of blocking in two directions, 
but it was found that the results were reproducible. The method has the advan
tage that while a blocking measurements is being made with one detector, fission 
fragments striking the other detector emerge from the crystal in a random or 
non-blocking direction and provide a test of detector response to a uniform 
exposure. It also allows a free choice of the direction of the recoil relative to the 
major crystal planes.

3.2 Data Analysis
Data analysis was carried out on the Chalk River PDP-10 computer by setting 
windows on the fission energy spectra and accumulating two-dimensional (64 X 64) 
position spectra from the event-mode recorded data. Typical fission energy 
spectra for 102-MeV 16O and 85-MeV 12C bombardment of tungsten are shown 
in fig. 5 for detectors located at —165° and +130° to the beam. The energy win
dows used in the analysis are indicated by horizontal lines with downward pointing 
arrows at either end. Windows were chosen that were symmetric about the fission 
peak in the energy spectrum so that a symmetric average over fission-fragment 
charge and mass, about the mean value, would be taken. This is necessary for 
comparison of the experimental and calculated blocking patterns since the 
calculations are made with the average charge and mass for the emitted fragment 
(see sec. 4). A test of the importance of the spread around the average value was 
made for the case of 102-MeV 16O bombardment of tungsten, where good sta
tistical accuracy was obtained; analysis of the data with wide and narrow fission



14 40:7

Fig. 5: Fission energy spectra from the position-sensitive front detector for 102-MeV 16O and 
85-MeV 12C bombardement of W, for two angles of observation. The horizontal lines with down
ward pointing arrows indicate the windows used in the analysis to generate the two-dimensional 
patterns.

energy windows gave blocking patterns which were identical, within statistical 
errors.

3.3 Detector Non-Linearities
With the very thin position-sensitive detectors used in these measurements, there 
is a problem with non-linearities in the position spectra. These arise from non
uniformities in sheet resistance over the implantation region of the detector and 
from the compromises required in electronic-shaping time constants18.

In order to correct the data for non-linearity effects the following correction 
procedure was applied: Masks, consisting of a thin piece of brass with a square 
array of holes, 0.5-mm diameter, accurately positioned with 1.5-mm spacing 
between centres, were placed over each detector. An amorphous tungsten target 
was bombarded with 40-MeV 16O ions, and two-dimensional position spectra 
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were recorded for each detector. The centroid, in x and y, for each peak in the 
two-dimensional spectra corresponding to the holes in the masks was determined 
by a computer program.

Due to the detector non-linearities, the (x,y) values were not uniformly 
spaced. The distortion was least-squares fitted by a polynomial which connected 
the experimental set of (x,y) values with an ideal, uniformly spaced set of (x',y') 
values. The polynomial had the form

x = ao + axx'+ a2x'2+ a3y'+ a4y'2 + a5x'y'+ a6x'y'2 + a7x/2y'

and similarly for y with coefficients b0 to b7. The number of experimental (x, y) 
values used in the fitting was usually ~ 80.

The polynomial was used to calculate the position in the distorted spectrum 
from which to take counts to be put in the corrected two-dimensional spectrum. 
In general, the position calculated in the distorted spectrum did not have integer 
(x, y) values, and contributions to the counts transferred to the new spectrum 
were taken from the four surrounding points with integer coordinate values, 
weighted according to the distance of the point from the calculated position (x,y). 
In this way, the integral linearity distortion has been corrected for, and the 
variation in differential linearity was corrected for separately through multipli
cation with the local Jacobian of the coordinate transformation.

3.4 Fission Cross Sections
In order to aid the interpretation of lifetime distributions, we measured fission 
cross sections for 16O bombardment of the four tungsten isotopes, 182>183-184-186Wj 
in a separate experiment. Thin targets (~ 100-250 /zg/cm2) of tungsten oxide, 
enriched to greater than 98% isotopic purity, on 30-/zg/cm2 aluminium backings 
were used. Three thin silicon surface-barrier detectors were placed in a scattering 
chamber at angles of 100°, 130°, and 170° to the beam direction, and the yield 
of fission fragments was measured as a function of 16O bombarding energy over 
the range 90 to 108 MeV. The relative solid angles were determined with a 
40-MeV 16O beam using the Rutherford scattering cross section.

The beam current was monitored with a detector at 40°, measuring the elastic
scattering yield. An absolute calibration of the cross sections was obtained by 
measuring the 40° fission and elastic yield for 97-MeV 16O in one of the fission 
counters, moved to 40°. The angular distribution of fission fragments was 
measured in detail for one isotope and one energy (see sec. 3.5) and was assumed 
to be the same for all energies and isotopes. In fact, the energy dependence of the 
anisotropy, discussed below, has only a small influence (< 5%) on the evaluation 
of the total cross sections.
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Fig. 6: Measured fission cross sec
tions for 16O-induced fission of the 
W isotopes, 182.3.4.6W, as functions 
of 16O bombarding energy. The 
data of Sikkeland 19 for 16O-induced 
fission of 182 W are also shown.

S2W (SIKKELAND) Z

TOTAL FISSION CROSS-SECTIONS 
FOR l60 -* W

ioL
86

3639-G

The measured cross sections are shown in fig. 6 for each isotope as a function 
of 16O bombarding energy. The results of Sikkeland19 for 182 W, also shown in 
fig. 6, are consistent with the present data.

3.5 Fission-Fragment Angular Distributions
The angular distribution contains important information about the angular 
momentum and excitation energy of fissioning nuclei, which may be used in 
the comparison with calculations (see sec. 6). A measurement of the angular 
distribution of fission fragments, from 40° to 170° in steps of 10°, was made for 
97-MeV 16O on 183 W, and the results are shown in fig. 7, where angles and solid 
angles have been converted into the center-of-mass system. As described in the 
previous section, this measurement allows determination of the total cross section 
from the yield measured at one angle (if symmetry around 90° is assumed). The 
limited information for other isotopes and energies obtained in connection with 
the measurements of cross sections (cf. sec. 3.4) is given in table A4 in the appen
dix. As a check, a few measurements with a movable counter were made for the 
isotope 182 W. The results are shown in fig. 21 and discussed in sec. 6.4.
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Fig. 7 : Fission-fragment angular 
distribution in the centre-of-mass 
system for 4 * * * * * * * * * * * 16O-induced fission of 
183 W. The experimental angular dis
tribution is compared with a 
(sin 0)-1 distribution. 

4. Analysis
4.1 Circular Integration
As shown in fig. 4, the blocking patterns exhibit strong planar blocking effects 
in addition to the axial blocking dip. Our analysis is based on the axial dip
alone, and in order to eliminate the influence of planar effects, the dip is con
structed from circular averages around the minimum. Compared to taking a
simple one-dimensional cut through the minimum, this procedure has the ad
vantages of improving statistical accuracy and eliminating planar effects since
the planar dips are compensated for by an enhanced yield between planes. On
the other hand, by averaging one loses information about asymmetries in the dip
associated with lifetime effects.

The first step in the averaging procedure is the determination of the dip 
centre. We have tried two methods: (i) To search for a minimum number of
counts within a small area, and (ii) to determine the centre from the symmetry
of the counts at the edges of the dip. The latter procedure is normally more accu
rate, but it is also more sensitive to detector non-linearities. We have therefore
mainly used the first method. A simple measure of the accuracy of the search is 
the variation of the centre coordinates with the size (radius) of the small area
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used in the search. For blocking patterns with reasonable statistics, the accuracy 
is better than 10% of the half-width at half minimum of the dip. For most pur
poses, this is sufficient, but if the dip contains structure in the centre (e.g., a 
flux peak, cf. below), the detailed shape of the circular-averaged dip may depend 
critically on the centre coordinates. Such structure may be seen more clearly 
from linear scans through the blocking pattern, as shown in fig. 8.

Normally, the yield as a function of the distance from the centre of the dip is 
determined from averages over circular rings. For large radii, the rings will 
intersect the edges of the detector where the yield may be distorted, and these 
regions are therefore not included in the circular averages. In order to minimize 
effects of detector non-linearity, the region used for constructing the blocking

Fig. 8: Linear scans across the 2-d blocking patterns in the < 111 > direction for 90- and 97-MeV 
16O-induced fission of W. The 90-MeV data correspond to a recoil direction of the compound nucleus 
toward the nearest-neighbour < 111 > row of atoms. The 97-MeV data correspond to a recoil directed 
toward the centre of a < 111 > channel, which results in a “flux peak” in the centre of the blocking 
dip, as described in the text (cf. figs. 10 and 11).
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dip was chosen to be nearly symmetric around the dip centre. A check of distor
tion due to edge effects or non-linearity is obtained from analysis of ‘random’ 
patterns, i. e., two-dimensional spectra containing no strong axial or planar block
ing features. In most cases, the circular integration for these spectra gave a yield 
as a function of distance from the centre coordinates, which was constant within 
a few percent. In a few cases, we have made a small correction based on the 
shape of the ‘random’ spectrum (cf. table 3).

4.2 Identification of Lifetime Effects
In order to identify possible effects of a nuclear recoil on the blocking dips, one 
must compare with a dip obtained in a situation where such effects are known to 
be absent (‘zero-lifetime normalization’). A common method1 consists of meas
uring the blocking dips for axes at different angles 6 to the incident beam, i. e., to 
the recoil direction. For small recoil distances, the minimum yield / of the dip 
is proportional to the mean-square displacement <r2>,

Z = CNdn<r2>, (1)

where N is the atomic density, d is the spacing of atoms along the axis in question, 
and C is a constant (C~2-3), which was originally introduced by Barrett20 to 
account for deviations from the simple continuum approximation 21 where C = 1. 
For the difference in minimum yield, Ax = Xi~ X2, between blocking dips at 
two different angles and 02 to the recoil direction, one obtains

Ax = 2CNd7tv2T2(sin2 (f — sin2 Of . (2)

Here, v denotes the recoil velocity, T the lifetime, and we have assumed the decay 
to be exponential. In this way, the contribution to <r2 > from thermal vibrations 
is eliminated. Also, other contributions to the minimum yield from, e.g., dechan
nelling or crystal imperfections, are strongly reduced.

This type of analysis has been applied to the lifetime investigation of heavy
ion-induced fission by the Dubna group10,11, and substantial lifetime effects have 
been observed. However, our measurements do not show any significant depend
ence of the minimum yield on the angle 0 between the recoil direction and the 
axis 12. This is illustrated by the results for 96-MeV 16O on tungsten shown in 
the upper part of fig. 9. A substantial influence on the dip of a nuclear recoil is 
revealed only by a comparison to the blocking dips obtained for elastic scattering 
of 40-MeV oxygen. In the figure, these dips have been scaled in angle by a factor 
(Zff /Zo)1/2 • (Eo/Eœ)1/2, where Z and E denote nuclear charge and energy offission 
fragments and of scattered oxygen. The average fission-fragment energy Eff is 
calculated from published values of the energy release in fission22.
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Fig. 9: Fission-fragment blocking dips (closed circles) for 96- and 97-MeV 16O bombardment of W. 
Results are shown for different angles 0 between the incident beam and the axis, different crystal 
temperatures, and different crystal thicknesses. Also shown, as open circles, are blocking dips for 
40-MeV 16O elastic scattering, scaled in angle by (Zn/Zo)1/2 X (Eo/E„)1/2 (see text). Included in the 
96-MeV plots are predicted blocking dips for v±t = 0.3Å and 0.9 Å. Solid lines through the data 
points are fits with the indicated amounts of short- and long-lived fission components.
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The elastic minimum yields are seen to be lower by ~0.15. The middle and 
lower pairs of measurements in fig. 9 demonstrate that this difference is not 
caused by a difference in multiple scattering for fission fragments and oxygen. 
A decrease in crystal temperature to liquid-nitrogen temperature strongly re
duces scattering due to thermal vibrations, and as shown in the middle part of 
fig. 9, the < 100> dip for fission fragments becomes wider, but the minimum 
yield is nearly unaffected. Neither does the variation of the crystal thickness by 
a factor of 6 change the difference between minimum yields for fission fragments 
and elastically scattered oxygen, as shown in the lower pair of blocking dips in 
fig. 9. We interpret this difference in the minimum yield as being due to a fission 
component with a lifetime so long that the corresponding average recoil distance 
perpendicular to the blocking axis is large, even for 0 = —165°. It can be seen 
from fig. 9 that the dips are consistent with this interpretation. The solid line 
through the data points has been obtained by a superposition of dips correspond
ing to a short lifetime (vxt = 0) and a long lifetime (v±t = 2 or 3Å). The short
lifetime dip is obtained from elastic scattering of oxygen, scaled as indicated 
above, and the long-lifetime dip from the calculation described below. This 
interpretation is consistent with all our data.

4.3 Calculation of Dips
The dependence of the blocking dip on the average recoil distance has been 
calculated in the “statistical-equilibrium multistring” approximation1. We shall 
first describe the model and present some results and then discuss briefly the 
accuracy and limitations of such a calculation.

The first assumption is that the trajectories of the emitted fission fragments 
may be described as motion in a transverse potential obtained by averaging the 
crystal potential along the axial direction. This is normally denoted the continuum 
approximation 21>23. With sufficient accuracy, we may represent the potential 
from a string of atoms by the standard potential of Lindhard21,

U(r)=^^log((Ca/r)* + l). (3)

Here, Zx and Z2 are the nuclear charges of the particle and the crystal atoms, 
respectively, d is the atomic spacing in the string, r is the perpendicular dis
tance from the string, and a is the Thomas-Fermi screening distance, a = 
ao0.885(Z12/3 + Z2/8)-1/2, where a^ is the Bohr radius. The constant C is a potential 
parameter, which is normally taken to be C = \/3- It is convenient to introduce 
a characteristic angle yq, by
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(4)

where E is the particle energy. Combining eqs. (3) and (4) gives

U(r) = |E^2 log ((Ca/r)2 + 1) . (5)

The total crystal potential is taken to be the sum of single string potentials. In 
the following, this sum i denoted by U. Since the potential decreases rapidly at 
large distances, only a few strings need be included. Fig. 10 shows contour plots 
of the multistring potential for a < 111 > direction in tungsten.

Fig. 10: Continuum 
potential-energy contours 
for fission fragments (Z = 41, 
A = 100) channeled along 
the < 111 > direction in W. 
The contours correspond 
to constant steps in i//, and 
the numerical values shown 
express in units of E^f 
The two recoil directions 
indicated by arrows a and b 
correspond to the two linear 
scans in fig. 8. The centers 
of atomic strings are marked 
by crosses. The distance 
between centers is 2.58 Å.

For a particle moving in this potential, the transverse energy E± = Eç?2 + U(r) 
will be conserved. Here (p is the instantaneous angle of motion with respect to the 
string direction and f is the position in the transverse plane. The motion of a 
particle with a given transverse energy E± is restricted to the area in the transverse 
plane U(r)< E±, i.e., bounded by the contour corresponding to U(r) =E.. In 
statistical equilibrium, the particle is found with equal probability anywhere in 
this area21,

(6)

where A(E±) is the allowed area (per unit cell).
Assuming statistical equilibrium, we may write an expression for the pro

bability for particles emitted inside the crystal (isotropically) at position f in the 
transverse plane to emerge from the crystal at an angle i// to the axis,
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n(f,V) =£ dE1^-yjd2f'«(E|Ks + U(f-)-EJ. (7)

This probability or yield is normalized to unity in the random case, i.e., for 
U(f) = 0.

Performing the integration over Ex, we obtain

1 I
A(E^ + U(f')) I E^+u(f')>u(f) (8)

If the emitting nucleus is recoiling, with a transverse direction specified by a 
unit vector ë = (ex, ey), expression (8) must be averaged over the one-dimensional 
distribution f(r) of points f = rê, and the total yield at angle y becomes

P(^) =J drf(r)77(rë,^) . (9)

For exponential decay with lifetime r and recoil velocity vx perpendicular to the 
axis, we have

f(r) = —e‘r/v<
V±T

(10)

We have neglected the thermal vibrations, which is reasonable if vxT>u1? 
where Uj is the one-dimensional RMS vibrational amplitude. For vxt^u15 a 
simple correction to eq. (9) consists in replacing f = r(ex,ey) by (((rex)2-f-uf)172, 
((rey)2 + u2)1/2). This correction has been included in the numerical calculations 
presented below (fig. 11).

Fig. 11 : Calculated blocking 
dips for fission fragments 
along a < 111 > axis in W, 
using the continuum 
potentials shown in fig. 10. 
Blocking dips are shown for 
recoil angles, 0R, of 0° and 
30° between the transverse 
component vx of the recoil 
velocity and the direction to 
the nearest-neighbour 
string (directions b and a in 
fig. 10), and the values of 
v±T (in Å) are indicated.



24 40:7

The formulae (8)-(10) lend themselves readily to numerical evaluation. The 
main job is the construction of tables for the functions U and A. By using symmetry 
arguments, the evaluation may be restricted to a small fraction of the unit cell. 
The contour plots of the potentials shown in fig. 10 were calculated by the com
puter program used to evaluate the blocking dips shown in fig. 11. For comparison, 
it should be noted that the width of an elastic dip (v±T = 0) is (^i/2/¥/i) ~ F For 
small average displacements, the main effect on the dip is a narrowing, while for 
larger displacements, the increase in minimum yield is the dominant feature. 
For vxT 2Å, there is virtually no dependence on the magnitude of v±r.

The recoil directions for the two sets of curves shown in Fig. 11 are specified 
by the values of 0R, which is the angle between the projection of the recoil 
direction on the transverse plane and the direction to the nearest neighbouring 
string (cf. fig. 10). The values of 0R have been chosen to correspond to the meas
urements presented in the following section. For 0R = 30°, the recoil is towards 
the centre of the channel where the potential has a minimum. Fission fragments 
emitted there give rise to a sharp peak at very small angles. This phenomenon 
was first observed in measurements of the location of interstitial impurities by 
the channeling technique24. It may be noted also that calculations very similar 
to those presented above have been used to interpret other such measurements25. 
The importance of the recoil direction for nuclear-lifetime measurements was 
first pointed out by Hashimoto et al.26.

Finally, a brief comment on the accuracy expected from these calculations. 
The two basic approximations applied are conservation of transverse energy and 
statistical equilibrium in the transverse phase space for fixed transverse energy. 
For thin targets, the first approximation is violated mainly by fluctuations in 
scattering by a string, due to thermal vibrations of the string atoms. This effect 
will be strong only for large transverse energies when the particle can penetrate 
close to the centre of strings, i.e., to distances comparable to the vibrational 
amplitude27. The elastic blocking dip (v±T = 0) will be very sensitive to this ther
mal multiple scattering, but for values of v±r where the predicted blocking dip is 
significantly narrower than the elastic one, the sensitivity is much smaller 1,2S. 
The second approximation of statistical equilibrium is not expected to be strictly 
fulfilled, and indeed it is a very interesting possibility that one may be able to 
derive information about the magnitude of the nuclear recoil from asymmetries 
of the blocking dip. By performing the circular averaging, however, one eliminates 
such asymmetries and effectively imposes an equilibrium in momentum space. 
It is expected, therefore, that even for relatively thin crystals, the assumption of 
statistical equilibrium is a good approximation for calculations of the azimuthally 
averaged blocking dips.
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4.4 Fitting Procedure
As illustrated in fig. 9, the measured blocking dips have been fitted by a super
position of two components, a long-lifetime component represented by a cal
culated curve and a short-lifetime component (v±T = 0) represented by the 
scaled blocking dip for elastic scattering. The advantage of using the elastic 
dip for zero-lifetime normalization is that the influence of crystal imperfections, 
including thermal vibrations, is taken into account. The question is, however, 
how accurate the simple scaling is. Consider'first the scaling of the halfwidth of 
the dip. For a perfect crystal without thermal multiple scattering, this scaling 
should be accurate for high projectile energies. More precisely, the condition23,29 
is that ø/tøqd)>l, (H)

where we have used the symbol Q for the two-dimensional vibrational amplitude, 
q — x/2^. This condition is only marginally fulfilled for the fission fragments, 
but the deviation from scaling should be small28. Because of thermal multiple 
scattering, the width of a blocking dip varies fairly rapidly with crystal thickness 
for small thicknesses30. This effect is not identical for elastic scattering of 40-MeV 
oxygen and for fission fragments since the characteristic depth zn for thermal 
scattering depends21 on the magnitude of the characteristic scattering angle 
given by eq. (4), zn oc i//~2. However, the effect should be small. The halfwidths 
for the blocking dips for elastically scattered oxygen are all very close to y/1 
(within ~5%), and the halfwidth estimated from the standard potential is, in 
the absence of multiple scattering21,

^,2 = F, 0 log ( (Ca/e)2 / log 2 + l)]1'2 = IW. (12)

at room temperature, where Q ~ 0.07 Å31. Thus the reduction caused by thermal 
scattering is ;$ 10%. We may also note that the dependence of the half-width, 
eq. (12), on the screening length a is weak, and therefore the variation of the 
scaling factor in eq. (12) with Zx is very small.

Other factors affecting the accuracy of the scaling are the large energy spread 
for fission fragments (cf. fig. 5) and the influence of angular resolution, which will 
depend on the width of the blocking dip. Such effects only become important 
if a very detailed interpretation of the shape of the blocking dip is attempted. 
Our analysis is based on simple two-component fits and the accuracy of the 
scaling of the width of the elastic dip seems sufficient for this purpose. In particular, 
the lower pair of measurements in fig. 9 shows that the angular scaling is not 
much affected by multiple-scattering effects.

Scaling of the minimum yield is also supported by the measurements for very 
different crystal thickness. Multiple-scattering effects are expected to be some
what stronger for fission fragments than for backscattered 40-MeV oxygen, and 
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the observation of fission dips with a minimum yield almost identical to that of 
the corresponding elastic dip (see sec. 5) is therefore another strong indication 
that the scaling of the minimum yield is reasonably accurate. The magnitude of 
the minimum yield depends on the quality of the thin single crystals used as 
targets (cf. table 1), and one of the advantages of using the elastic dips for zero
lifetime determination is that effects due to crystal imperfection are largely 
cancelled. It is necessary also to correct the calculated dips for these effects, and in 
the fits we have replaced the calculated yield function Yc by Yc(l — /el) +Zel, where 
Xel is the measured minimum yield for the elastic blocking dip. This correction 
becomes important when an intermediate-lifetime component (0.1 Å< v t<1A) 
is included in the analysis.

Some comments about the selection of parameters for the fits are also in 
order. First, normalization of the fission dip was treated as an adjustable para
meter. In some cases, the random level is not very well established, and the nor
malization may appear to be wrong (cf. upper left corner in fig. 9). However, 
at large angles, the circular average includes regions close to the detector edge, 
and spurious structure due to detector non-linearity may appear. For these cases, 
we found similar structure in an analysis of the corresponding blocking pattern 
taken for a random direction, using the same dip centre. Second, the average 
recoil distance v T for the long-lifetime component was chosen; detailed arguments 
for the specific choices will be given later. Third, an upper limit on the angular 
range for fitting was specified. For the simple two-component fits, the first six 
points in the bottom region of the dip were selected, thus emphasizing agreement 
in minimum yield. The computer program determined the relative magnitudes 
of the two components, which gave the lowest value of/2 over that angular region. 
For most cases, the uncertainty in the determination of the magnitude of the long 
component was ~l-2%. Thus, the two upper dips in fig. 9 correspond to the 
same magnitude of the long component, and the difference between the long
lifetime components for the two lower dips is barely significant. 5

5. Data Presentation
5.1 Data for 16O—> Au
In the first series of measurements, fission induced by oxygen bombardment of 
gold crystals was investigated. At that time, we were still looking for a dependence 
of the minimum yield on the angle 0 between the recoil direction and the blocking 
axis (cf. sec. 4.2). The blocking dips for fission fragments were measured along 
two < 110 > directions at approximately +170° and —100° to the beam direction, 
respectively. Results for four different runs are shown in table 2. For each dip,
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Table 2. Minimum yields of fission-fragment blocking dips for 16O induced fission of 197Au at observa
tion angles of—100° and 170° to the beam. The minimum yields x are determined by the counts con
tained within the circle with the specified radius, normalized to the random level of the blocking 
dip. The radius and the half angle </1/2 of the blocking dips are given in units of channels in the 
2-d spectrum. Ax is the difference in minimum yield between the forward and backward counters.

Energy
(MeV)

Angle
(deg)

Radius Z(%) ^1/2
Angle
(deg)

Radius Z(%) YG/2 4/(%)

90 170 2.5 14.0 ± 2.2 9.0 -100 2.0 13.5 ± 3.0 7.3 -0.5 ±3.5
5.0 20.0 ± 1.3 4.0 19.5 ± 2.0 -0.5 ±2.4

90 170 2.5 17.5 ± 1.4 9.7 -100 2.0 18.3 ± 2.0 7.3 0.8 ± 1.8
5.0 22.5 ±0.8 4.0 23.0 ± 1.1 0.3 ± 1.4

86 170 2.5 13.4 ± 1.9 9.0 -100 2.0 16.7 ± 3.1 7.5 3.3 ± 3.6
5.0 16.9 ± 1.0 4.0 20.6 ± 1.5 3.7 ± 1.8

86 170 2.5 14.7 ± 2.3 9.5 -100 2.0 14.2 ± 3.1 7.9 -0.7 ± 3.9
5.0 19.8 ± 1.3 4.0 19.3 ± 1.7 -0.5 ± 2.2

two values of the minimum yield / are given. They have been obtained by averag
ing the counts in the centre of the dip within a circle with a diameter equal to 
25% and 50% of the full width at half maximum of the dip. The uncertainties 
are based on counting statistics only. For both bombarding energies, the difference 
J/ is zero within an error of two percent.

Unfortunately, we did not at that time use a zero-lifetime calibration based 
on elastic scattering of oxygen, but from a comparison with the minimum yield 
for backscattering of 2-MeV helium (/ — 7% averaged over the crystal thickness), 
we may conclude that a possible long-lifetime component must contribute less 
than 10% to the fission yield. A difference between the shapes of the blocking 
dips for the two bombarding energies does suggest the presence of a long-lifetime 
component, at least for E = 90 MeV.

5.2 Data for 16O> W
The experiments with tungsten targets have all been analyzed as discussed in 
secs. 3 and 4, and the results are given in table 3. The quality of the two-component 
fits may be judged from figs. 12 and 13, which show results from two different 
runs with different target crystals. The data in fig. 12 were obtained with the two 
< 111 > axes in the directions of the two detectors simultaneously, while the 
blocking dips shown in fig. 13 were obtained separately for different crystal tilts.

In most cases, the two components chosen for the fit correspond to very short 
and very long recoils. Only for E = 90 MeV does the dip at 0 = —165° indicate 
the presence of a significant component with an intermediate lifetime. The three
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3635 C

Fig. 12: Fission-fragment blocking dips (closed circles) for 90-, 96-, and 108-MeV 16O bombardment 
of W. The recoil angle is 0R = 0° (direction b in fig. 10). The solid curves are fits by a superposition 
of two components with different average recoil distances v±r (see text). For 90-MeV are shown the 
blocking dips for 40-MeV 16O elastic scattering (open circles) scaled in angle and the calculated 
dips for a long average recoil (upper solid curve), which represent the two components in the fit.
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Fig. 13: Fission-fragment blocking dips for 94-, 97-, and 102-MeV bombardment of W for 0R = 30° 
(direction a in fig. 10). The solid lines through the data are two-component fits, and the two com
ponents are shown for 102 MeV (cf. caption to fig. 12).
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Table 3. Results of two-component fits to W(18O,f) data. The beam energy and crystal identification 
are given in the first two columns (cf. table 1 for characterization of crystals), and in the third column

Energy 
(MeV) Crystal Det. Angles vxt(Å) Amount ZL(%)

90 W1 -165 0.7 20.6 ± 1.4
0.5 23.5 ± 1.7

90 W1 -165 0.7 22.9 ± 0.5
0.5 26.0 ±0.7

-100 2.0 14.9 ± 1.2
3.0 15.0 ± 1.2

94 W3 -165 1.0 23.5 ± 0.6*
4.0 20.3 ± 0.6*

130 4.0 21.4 ± 0.9
96 W1 -165 1.0 25.8 ± 1.0

3.0 23.2 ± 0.8
-100 3.0 17.0 ± 3.1

96 W1 -165 1.0 23.1 ± 0.2
-100 3.0 22.3 ± 1.4

96 W1 -165 1.0 19.7 ± 1.2
-100 3.0 22.1 ± 4.6

96 W2 -165 1.0 21.5 ± 0.8
3.0 18.4 ± 0.8

130 3.0 16.8 ± 1.0
97 W3 -165 1.0 24.4 ± 0.4*

4.0 21.5 ± 0.3*
130 4.0 21.9 ± 0.8

97 W3 -168 1.0 23.3 ± 0.9
4.0 19.8 ± 0.6

160 1.0 21.3 ± 0.9
4.0 18.2 ± 0.7

97 W4 -165 2.0 18.3 ± 0.5
4.0 17.4 ± 0.5

102 W3 -165 4.0 17.9 ± 0.2*
130 4.0 15.4 ± 0.6

108 W1 -165 3.0 10.9 ± 0.6
-100 3.0 10.9 ± 2.4

108 W3 -165 4.0 13.7 ± 1.2
130 4.0 10.7 ± 0.6

115 W3 -165 4.0 5.8 ± 0.5
130 4.0 4.1 ± 1.8
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the angle of the detector to the beam direction is specified. The blocking dips are fitted with a super
position of two components, one with a short lifetime, v±r = 0, and one with the average perpendic
ular recoil distance given in the fourth column. The magnitude of this long-lifetime component 
ZL is given in the last column, with an error corresponding to an increase of unity in /2 for the 
fit. For some cases, two equally good fits are given. Note that different choices of v±r 3: 2Å are 
equivalent, i.e., a blocking'dip corresponding to very long lifetimes may be represented by any 
value VjT 3: 2Å. For the cases marked with an asterisk, the magnitude of ZL obtained from the fit 
was increased by 2% as a correction for nonlinearity. Also the corresponding numbers in figs. 9 and 
13 have been corrected.

measurements at 90 MeV are all fitted well with a long component with recoil 
v±T= 0.7 Å for the backward detector (table 3, one result given in ref. 12). The 
corresponding recoil for the forward counter is larger by a factor of ~ 4, i.e., 
close to 3 Å.

For the intermediate energies, 94-97 MeV, a recoil of vt ~ 4 A, corresponding 
to v±T ~ 1 Å for the backward detector, has been chosen for the fits shown in the 
figures. The arguments for this choice are not very strong, and the dips can be 
fitted equally well with v±T = 4Å for the backward counter. As seen in the table, 
this changes the magnitude of the long component by ~2%. The choice of the 
value of vT ~ 4Å is based on analysis of fine structure in the dips, which for these 
energies shows evidence of asymmetries correlated with the recoil direction.

Fig. 14: Fission-fragment blocking dips for 115-MeV 16O bombardment of W for 0R =30°. Also 
shown are the short- and long-recoil dips used in the fit.
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From table 3 it can be seen that the magnitude of the long component varies 
systematically with energy, and different measurements at the same energy are 
reasonably consistent. The errors given in the table are based on the /2 analysis 
and do not include uncertainties associated with the determination of a random 
level (normalization) or of the elastic dip. At the high bombarding energies, the 
magnitude of the long component approaches zero. The results and analysis of 
the measurements at 115 MeV are shown in fig. 14. The fact that the fission dips 
for some cases are close to the scaled elastic dip is a crucial check of the method 
of analysis, as discussed in sec. 4.4.

5.3 Dependence on Recoil Direction
The measurements shown in figs. 12 and 13 correspond to two different recoil 
directions. As discussed in sec. 4.3, the central structure of the blocking dips will, 
for long recoil distances, depend on whether the recoil is directed towards the 
centre of the channel (fig. 13) or is parallel to the side of the channel (fig. 12), 
and the calculated dips for these two situations are shown in fig. 11. The data in 
the two figures are not in all cases consistent with the predicted structure. This 
may at least partly be due to the difficulty of locating the centre of the dip. A 
change in centre coordinates by one channel, which is about the uncertainty of 
the determination, may in some cases lead to a significant change in the central 
structure of the circular averaged dip. A better check of the predicted dependence 
on recoil direction is obtained from linear scans through the dip centre. Such 
scans, corresponding to the two different recoil directions, are shown in fig. 8. 
The peak due to flux peaking in the centre of the scan for 97 MeV is clearly 
indicated, while for the 90-MeV scan, there is a narrow dip in the centre. For the 
measurements shown in fig. 12, the recoil is parallel to a side of the channel, but 
the data do not confirm the predicted narrow dip at the centre for the forward 
counter (0 = 100°). A possible explanation for this discrepancy may be that the 
recoil direction for compound nuclei fissioning after evaporation of several neu
trons is affected by the neutron emission, and the angular distribution will have 
a width of a few degrees. This may influence the central structure if the recoil 
is very long. It is then important also to consider whether the recoiling atoms may 
be deflected by neighbouring atoms, but this appears not to be the case for the 
geometry of the present measurements.

5.4 Data for 12C —> W and 19F —> W
The measurements presented in table 3 demonstrate the disappearance of the 
long-lifetime component at high bombarding energies, as predicted from the
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Fig. 15: Fission-fragment blocking dips for 80-, 82.5-, and 85-MeV 12C bombardment of W for 
= 30°. For 85-MeV, the short- and long-recoil dips used in the fits are also shown.

qualitative discussion in the introduction. Unfortunately, it was not possible to 
check the low-energy limit for 16O projectiles. Close to the Coulomb barrier, the 
elastic, or quasi-elastic, large-angle scattering becomes very strong compared to 
the fission yield, and the fission fragments could not be separated from back- 
scattered oxygen. This separation is possible for 12C projectiles (cf. fig. 5) because
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Table 4. Results of two-component fits to W(12C, f) data (see table 3).

E(MeV) Det. Angle v±t(Å) Amount ZL(%)

80 -165° 4.0 1.8 ± 1.2
130° 4.0 1.8 ± 2.0

82.5 -168° 4.0 9.1 ± 0.6
130° 4.0 6.6 ± 1.2

85 -168° 4.0 15.0 ± 0.8
130° 4.0 11.2 ± 0.6

87 -165° 4.0 14.5 ± 0.5

of the lower stopping power and the consequent lower value of the maximum 
energy deposited in the thin counters. The results of a series of measurements 
between 80 and 85 MeV are shown in fig. 15. The dips are again fitted by two 
components and the resulting magnitudes are given in table 4, which also includes 
one measurement at 87 MeV. It is seen that the long component increases with 
energy, being virtually zero at 80 MeV. Like the result for 115-MeV 16O on 
tungsten, this is an important check of the validity of the analysis based on a 
comparison with scaled elastic dips. The energy dependence of the long component 
is consistent with the qualitative discussion in the introduction since in this energy 
region, the fission probability is small and increases rapidly with energy32,34.

6. Discussion and Comparison with Calculations
6.1 Qualitative Remarks
Before making a comparison with detailed calculations, we examine the results
on the basis of the simple qualitative picture described in the introduction. For
this purpose, the magnitude of the long-lifetime component /L for fission induced
by oxygen bombardment of tungsten is shown in fig. 16 as a function of bombarding
energy. The decrease of/L at the highest bombarding energies was, as discussed
in the introduction, expected because of the increase in fissionability at high
angular momentum. Also, the increase in initial excitation energy of the com-

Only two short runs were made for 19F bombardment of tungsten, one at 
95 MeV and one at 108 MeV. Least-squares fits to the backward-counter 

( 6 — —165°) data gave long-lifetime components of 16 ± 8% (v±T = 1 Å for 96 MeV 
and 10±0.5% (v±T = 4Å) for 108 MeV. The statistical error for the 95-MeV 
point is large, but the results are in qualitative agreement with the energy depend
ence of the 16O±W data (cf. fig. 16). 6 * * * * * * * *
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Fig. 16: The percentage of 
a long-lived component in 
the 12C, 16O, and 19F-induced 
fission of W, as a function 30
of projectile bombarding 
energy. The results have 
been obtained from two- 
component fits to the 2q
blocking dips measured at y
different detector angles 
(backward ~ 165°, forward 
100° or 130°, cf. tables 3
and 4). 10

0

pound nucleus will in itself tend to reduce the importance of fission at low excita
tion energy, since the number of neutrons to be evaporated before fission increases.

The behaviour at low bombarding energy could not, for technical reasons, 
be studied for oxygen projectiles (cf. sec. 5.4). However, the measurements with 
carbon as projectile have been included in the figure, and these data confirm the 
predicted increase of/L, from an initally low value, with bombarding energy. 
Plotting the data against projectile bombarding energy is somewhat arbitrary. 
For a given bombarding energy, both the excitation energies (cf. table 5) and the 
angular-momentum distributions are rather different for the different compound 
nuclei, but for the present qualitative discussion, this is not so important.

Fig. 16 shows values of/L for both detector systems; there appears to be a 
systematic difference with the backward detector (0~165°) having the larger 
value of /L. This effect will be discussed later together with the anisotropy of 
the fission-fragment angular distributions.
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Table 5. Relative abundance of W isotopes and Q values for fusion with 12C and 16O.

Isotope of tungsten Abundance (%) Fusion Q Value
12C 16O

182 26.2 -16.0 -27.1
183 14.3 -15.3 -25.8
184 30.7 -13.8 -24.3
186 28.7 -11.5 -21.3
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6.2 Calculations
It is only through a comparison with realistic calculations, such as those of Hage- 
lund and Jensen13, that the full information contained in the measurements is 
brought out. Considerable improvements have been made in the calculations, 
and details are given in the Appendix. Fig. 17 shows results for the fission and 
neutron-evaporation process for two 16O bombarding energies. In the initially 
formed compound nucleus, 198 Pb, the excitation energy is well defined, and the 
top curve for both cases shows the contributions from different spin values to the 
total first-chance fission yield. These curves deviate from the triangular shape of 
the spin distribution due to the spin dependence of the fission probability, which 
is quite strong for the largest angular-momentum values.

Fig. 17 : Calculated contour diagrams of the population distribution, weighted with the fission 
probability, in excitation energy E* and spin J for 90- and 97-MeV 18O-induced fission of 182W. 
The curves centred at different excitation energy correspond to successive nuclei resulting from 
the nucleus after emission of one to five neutrons, i.e., with A = 197, 196, 195, 194, 193. The dashed 
lines are for constant lifetimes of 10 and 100 as for the isotopes A = 195 (90 MeV) and A = 194 
(97 MeV). For the compund nucleus 198Pb itself, the excitation energy is well defined, 55 MeV and 
62 MeV for 16O energy 90 MeV and 97 MeV, respectively, and the top curves show the fission 
probability as a function of spin, weighted by the triangular spin distribution. Values are in units 
of 10-4 h-1, and the numbers on the contours are in units of 10-4 h-1 MeV-1.
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For higher-chance fission, the distribution in excitation energy becomes in
creasingly broad owing to the spread in energy of evaporated neutrons. The fission 
contributions are indicated by contours of constant yield. The different stages 
contribute almost equally and fission at high spin values dominates.

The lifetime is determined mainly by the excitation energy. The dashed 
lines indicate contours of constant lifetime for the compound nucleus after evapo
ration of three and four neutrons, respectively, for 90- and 97-MeV bombarding 
energy. For the lowest spin values, neutron evaporation dominates, and the 
excitation energy for constant lifetime increases with increasing spin. For high- 
spin values, the fission width increases rapidly for fixed excitation energy, and 
therefore the dashed curves bend down as seen for the 97-MeV case. The two 
dashed curves divide the (E*,J) plane into three regions, corresponding approxi
mately to short, intermediate, and long lifetimes (vt~ 3 Å for r = 10_16s). The 
calculations presented in fig. 17 indicate that for 90-MeV bombarding energy, 
the lifetime distribution will have a large component in the intermediate-lifetime 
region, while for 97 MeV, long-lifetime values will be strongly populated.

The choice of parameters used in the calculations is dicussed in detail in the 
Appendix. Here, we comment briefly on the constraints imposed by the three 
types of data.

(i) Total fission cross sections
If the cross section for complete fusion is known, a measured fission cross 

section may be converted into an effective fission probability Pt summed over all 
stages of fission, and this quantity depends sensitively on the magnitude of the 
fission barriers. The requirement that the calculations reproduce the measured 
fission cross sections for all 16O bombarding energies for all tungsten isotopes is the 
main constraint on the absolute magnitude of the fission barrier and its variation 
with mass number. With the parameters given in the Appendix, all measured fis
sion cross sections are reproduced within 10% (cf. tables A2 and A3).

(ii) Lifetime distributions
The importance of fission at the different stages of the evaporation chain 

depends on the relative magnitude of the corresponding fission barriers, and the 
long-lifetime component will thus be very sensitive to the A dependence of the 
fission barrier. This dependence is already constrained by the total cross sections, 
but when the mass is reduced by neutron evaporation, the excitation energy is 
also reduced, and the effective fission barrier may change due to the temperature 
dependence of shell corrections. The magnitude of such corrections and the 
manner in which they are included in the level density are therefore of special 
importance for the calculated lifetime distributions.
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(iii) Fission-fragment angular distributions
The anisotropy of the fission-fragment angular distributions depends on the 

angular-momentum distribution, the effective moment of inertia at the barrier 
deformation, and the average temperature of the fissioning nuclei. The tempera
ture is constrained by the lifetime measurements, the moments of inertia may be 
calculated as rigid-body values if the deformation at the barrier is known, and 
the measured anisotropy then sets narrow limits for the spin distribution of the 
fissioning nuclei. As mentioned above, this distribution is important for the ana
lysis of the total cross-section measurements. In the interpretation of the lifetime 
measurements, it is necessary to take into account the large anisotropy in the 
angular distributions. This is discussed later in connection with the comparison 
of measured and calculated angular distributions of fission fragments.

6.3 Lifetime Distributions
Some calculated lifetime distributions are shown in figs. 18-20. In fig. 18 the 
variation of the lifetime distribution with bombarding energy is shown for the 
most important isotope, 182 W. In qualitative agreement with the measurements 
shown in fig. 16, the long-lifetime component (t> 10“ 16s) initially increases with 
increasing bombarding energy to a maximum /L ~ 20% between 90 and 100 MeV.

Fig. 18: The calculated 
percentage yield for 
19O-induced fission of182 W 
as a function of lifetime r for 
nine bombarding energies. 
The total yield for each 
bombarding energy is 100%, 
but only those components 
with T > 1 as are shown.
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It is important to note that although the absolute magnitude of ZL in the inter
mediate-energy region has been fitted by parameter adjustment to agree with 
experiment, this is not the case for the energy dependence of .

The distributions shown in fig. 18 have structure corresponding to the separa
tion into the different stages of fission in the evaporation chain (cf. fig. 17). With 
increasing bombarding energy, the average lifetime for a particular stage decreases 
by about one order of magnitude per 10 MeV. The contribution from fission 
for A= 195 (fourth chance) moves from r ~ 10—16 — 10~15 s at 78-82 MeV to 
r ~ 10-17 —10-16 s at 90 MeV and finally to short lifetimes, T < 10-17 s, for 97 MeV 
and above. At the highest bombarding energies, there is little structure in the 
lifetime distributions since the energy distributions for the last stages of fission 
overlap strongly.

The lifetime measurements were made with tungsten targets of natural com
position, and the results must be compared to a weighted sum of lifetime distri-

Fig. 19: Calculated yield as a function of 
lifetime for 16O-induced fission of natural
composition W at 90-MeV bombarding 
energy. The weights assigned to the dif
ferent isotopes have been obtained from 
the measured cross sections combined with 
the natural abundances.

Fig. 20: Calculated yield, as a function of 
lifetime, for 16O-induced fission of natural
composition W at 97-MeV bombarding 
energy (cf. caption to fig. 19). 
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butions for the individual isotopes. The relative abundances and Q values for 
the different isotopes are given in table 5. Since the Q values are different for the 
different isotopes, the averaging smears most of the structure in the individual 
lifetime distributions. The results for 90- and 97-MeV bombarding energy are 
shown in figs. 19 and 20. There is little difference between these two lifetime 
distributions, but in qualitative agreement with experiment, the number of 
fissioning nuclei having lifetimes r~ 10-17 — 10-16 s is slightly larger at 90 MeV.

Fission from long-lived, r> 10“16 s, compound nuclei will contribute a long- 
recoil component for both the backward and the forward detectors. The projec
tion factors (sin 0) for the two directions of observation differ by a factor 3-4, 
corresponding approximately to one interval in lifetime in figs. 18-20. The long- 
recoil components in the two directions should therefore differ by an amount 
approximately equal to the population of the interval t = 3x 10~17 — 10_16s, 
i. e., the long component /L should be larger by about 5% in the forward detector 
for the cases illustrated in figs. 19 and 20. As seen in table 3 and fig. 16, this is 
not the case. However, the apparent inconsistency may be explained by the large 
anisotropy of the fission-fragment angular distributions, as discussed below.

6.4 Fission-Fragment Angular Distributions
In the fission of high-spin compound nuclei created by heavy-ion bombardment, 
the fragment angular distribution is strongly anisotropic33. The reason for this is 
that, due to the large nuclear deformation at the fission barrier, the moment of 
inertia will be very different for rotations with angular momentum parallel and 
perpendicular to the axis of deformation; therefore, the rotational energy will 
depend on the relative orientation of the spin and the deformation axis. For an 
axially symmetric deformation, one may denote the two moments of inertia by 
3(l and 3X and introduce an effective moment of inertia by 1 /3e = 1/3I( —1/3. . 
The decisive parameter is the ratio of the difference in rotational energy to the 
nuclear temperature 33, 2p = h21 (Iff l)/(2T3e) where Ih is the angular mo
mentum. When p is large, the fragments will be emitted preferentially in the 
plane perpendicular to the angular-momentum vector. For a compound nucleus 
created by ion bombardment, the spin is perpendicular to the beam direction, 
and confinement of the fission fragments to the plane perpendicular to the spin 
direction corresponds to an angular distribution proportional to 1 /sin 0. where 0 
is the angle relative to the beam direction. For finite values of p, the angular 
distribution will deviate from 1 /sin 0 at angles close to 0° and 180° and reach a 
maximum depending on the parameter p. A measurement of the anisotropy 
therefore determines the effective value of p.

The main problem in the analysis is usually that all three quantities in the
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expression for p, i.e., I, Je, and T, are uncertain. In the present case, there is 
independent information on the effective temperature from the lifetime measure
ments since the main uncertainty is associated with the fission distribution over 
several stages in the evaporation cascade. The effective moment of inertia may 
be calculated from rigid-body values if the nuclear deformation at the barrier is 
known. In the present calculations, we have chosen the value corresponding to 
the liquid-drop barrier. It is shown in the Appendix that it is possible to reproduce 
the measured anisotropies as well as the total fission cross sections with values of 
the maximum compound-nucleus spin which are consistent with the theoretical 
estimates of Bass35. A comparison of measured anisotropies and predictions for 

Fig. 21: Angular distributions of fission 
fragments for 90-, 94-, and 97-MeV 16O 
bombardment of 182 W, normalized to a 
(sin 0)_1 distribution at 140° in the centre- 
of-mass system. The solid lines are calcu
lated angular distributions, summed over 
all stages of fission.

Fig. 22: Calculated fission-fragment angu
lar distributions for 90-MeV 16O bombard
ment of 182 W. The fission yield has been 
divided into three lifetime regions corre
sponding approximately to the short-, in
termediate-, and long-lifetime regions of 
sensitivity in the blocking lifetime measure
ments. The dashed curve is the average 
angular distribution obtained by adding
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the isotope 182 W for 7 * * * * * * * * 16O bombarding energies of 90, 94, and 97 MeV is shown 
in fig. 21, and the comparison between all data and predicted values is given in 
table A4 in the Appendix.

7. Concluding Remarks
We believe that the present systematic measurements demonstrate that a new
type of analysis must be adopted in the application of the blocking technique to 
lifetime measurements of heavy-ion-induced fission. Lifetimes cannot be extracted 
from the difference of minimum yields for blocking patterns recorded at 
different angles to the incident beam. An analysis in terms of several components 
with different lifetimes, however, can yield useful information. We have limited
ourselves to two components in the present analysis, but in some cases, more 
information may be obtained by including a third component34 or by introducing 
a continuous lifetime distribution characterized by a few parameters.

Our results, particularly for the energy dependence of the long-lifetime com
ponent, are consistent with expectations based on a simple physical picture of
the fission process. It has also been possible to reproduce the data by detailed
numerical calculations, including the full neutron-evaporation cascade. In this 
regard, it was important to combine the lifetime results with measurements of 
total fission cross sections and fission-fragment angular distributions. Although
the set of parameters in the calculations, which reproduces the available data, 
is not unique, the ambiguities are greatly reduced compared to cases where only 
one type of data, such as total cross sections, is analyzed. In particular, the new
information obtained from the lifetime measurements appears to be very useful.

The curves in fig. 21 represent weighted averages over all stages of fission and 
thus over a broad range of temperatures. The early-stage fission at high tempera
ture is less anisotropic than late-stage fission at lower temperature. Since the 
nuclear lifetime varies rapidly with the nuclear temperature, the anisotropy 
and the lifetime will be strongly correlated. This is shown in fig. 22 for 90-MeV 
16 O on 182 W. The fission yield has been divided into three lifetime regions, 
and the angular dependence of the cross section is given for each interval 
separately as well as for the total. At backward angles, the intermediate- and 
long-lifetime components are enhanced relative to the average by 25-30%. This 
offers an explanation for the difference between the /L values for the forward and 
backward counters which is observed (cf. fig. 16) when the analysis is made with 
average recoil distances for the long component consistent with the difference in 
projection factor.
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We intend to continue the experiments with monoisotopic tungsten crystals. 
Such measurements should add further parameter constraints to the calculations, 
and we hope also to obtain more detailed information on the time distributions 
when the results are not smeared by an average over isotopes.
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APPENDIX
The main features of the theoretical model were described in ref. 13, where it 
was shown that calculations based on this model qualitatively reproduce the 
experimental findings. We have extended the calculations with the more ambi
tious goal of reproducing quantitatively the experimental data, which have been 
supplemented with measurements of fission-fragment angular distributions. For 
this purpose, some improvements to the model have been introduced, and in the 
following discussion we shall indicate these modifications.

The first part of the appendix is a broad outline of the theoretical model used, 
with expressions for the most important quantities. In the second part is discussed 
how the parameters are determined and which of them are most important for 
reproducing the present data. The third part contains the results of the model 
calculations and a comparison with the experimental values.

Al. Theoretical Model
The fission process is assumed to proceed via the formation of a compound nucleus 
with a well-defined excitation energy and a spin distribution characterized by a 
sharp cut-off at a maximum angular momentum Im . Three modes of decay are 
included, viz. fission, neutron emission, and y emission, and the development of 
the distribution in excitation energy and spin of the nucleus is followed through 
the neutron-evaporation cascade.

A 1.1 Widths
The partial widths for the three decay modes are calculated from the standard 
formulas for a statistical model, which express the widths in terms of level densities 
and appropriate constants and weighting functions. The neutron width may be 
expressed as a sum of contributions from final nuclear states with spin T and 
excitation energy E —Bn —e, 

with 

(Al)

where Qc and Qn are the level densities for the nucleus before and after the neu
tron emission and T^ (e) are the neutron-transmission coefficients for orbital 
angular momentum L total spin j, and kinetic energy E.
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The fission width is given by

2tt£c(E. I) Jo
______ Qb I ) dfi______
1+exp (-^(E-B,-£)

which for E > Bf reduces to

/'(E’1) ~ 2æ^c(E,I)|0

(A3)

(A4)

Here QB is the level density at the saddle point for fission. Note that the dependence 
of the effective fission barrier on angular momentum is implicity included through 
this level density (cf. eq. A8). The main parameter in eq. (A3) is the fission barrier 
Bf. It may be expressed as a smooth contribution Bf corrected for barrier and 
ground-state shell and pairing corrections,

Bf = Bf — <5Ugs — <5Pgs + <5Ub + <5Pb . (A5)

The radiation width is given by

1 1+1 fE/;(EJ) =2ÏMEJ)jT, J. ^(E-M)fWd£. (A6)

In contrast to ref. 13, we have used a function, f(e) given by the giant dipole 
expression 36a,

8 1.4 e2 NZ Tg£4 
Cy3mc2hc A (FGe)2 + (e2-E(?)2 (A7)

The fraction of exchange force present in the nuclear force is taken as 0.5 as in 
ref. 37, leading to the value 1.4 in eq. (A7).

A 1.2 The level density
The intrinsic level density ß(E) is taken from ref. 15 for energies larger than the 
largest critical energy for disappearance of pairing. For smaller energies, a 
smoothly connected constant-temperature expression (g(E) oc exp(E/T)) is used. 
With this assumption, the number of levels at zero excitation energy agrees 
reasonably well with experiments.

A spin dependence of the shell correction (as introduced in ref. 13) is not 
included because of its small effect and the uncertainties and complications 
involved.
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The total level density is obtained as usual for an axial- and R-symmetric 
system by assuming a rotational band built on top of each intrinsic level38, lead
ing to

e(E,I) = ___ 1___  y
2v^3nTk±.i

1(1 + 1)
23±

IC\
23e/‘

(A8)

When the rotational energies are small relative to E, this simplifies to

I(I + 1)\
23±T / (A9)

Here, 3n and 3± denote the moments of inertia parallel and perpendicular to 
the symmetry axis, and 3e is the effective moment of inertia, l/3e = 1/3|, — l/3±. 
The temperature T is given by

l/T=^glne(E). (A10)

This level density is used both at the ground-state and barrier deformations. At 
first it may seem strange to count rotational levels at the ground state of, e.g., 
200 Pb, which is usually assumed spherical. The argument is that fairly high spin 
states (25h-50h) are populated, leading to a deformed equilibrium shape. 
Furthermore, even for low spin values, the nucleus has a finite probability of 
being deformed. Since the rotational enchancement factor is very large, it is 
conceivable that a flat, spherical equilibrium effectively requires a level density 
including rotational contributions. Attempts to analyze cross sections for fission 
of spherical nuclei induced by light particles indicate that such a level density 
should always be used. This is the case even for high excitation energies ($:50 
MeV) where the rotations are usually expected to vanish for ground-state defor
mations 38.

A 1.3 Moments of inertia
The moments of inertia have rigid-body values as expected39 for high excitation 
energy', high spin, and large deformation. They are calculated from a uniform 
distribution with a sharp cut-off at the boundary. The shape is axially symmetric 
around the z axis and given by40

£2 = (c2R2-z2)(A + Bz2/(c2R2)) , (AH)
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^ = A + |b, B=i(c-l)+2h, R = r0A>'3, (A12)

where c and h are deformation parameters. The moments of inertia are then for 
a system of N nucleons

3H=jmNR2cs{^+A3+^A-B}, (A13)

31=imNR2c5|A + ^B}+^ll. (AI4)

A 1.4 Angular distribution of fission fragments
For a nucleus of spin I and energy E, the distribution of the emitted fission frag
ments with respect to the beam axis is approximately33,41

WE M = V '! , (Al 5)
' ' 71 erf(-\Æp)

where

P = = TBJe (Barrier) . (A16)

Here erf is the error function and Jo the zero-order Bessel function. The temper
ature Tb corresponds to the intrinsic excitation energy at the barrier and there
fore depends on spin,

= ■ (A17) 

Expression (Al 5) corresponds to the relative probabilities of different projections 
K of the spin on the symmetry axis, which are implicitly given in eq. (A8). 
However, to arrive at eq. (A15), only the expansion in the last parameter in 
eq. (A8), K?/23e, is necessary. The total angular distribution W(0) is obtained 
by summing and integrating eq. (A15) over the spin and energy distribution 
P(E,I) of all stages in the evaporation cascade, weighted, of course, with the 
fission probability,

W(9) = S sfdE

Nuclei I J
(A18)
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A2. Parameter Determination for 16O + W
The parameters fall into two groups. One consists of parameters either fixed 
from independent considerations or relatively unimportant for the present data; 
these are discussed in the first two sections. The second group contains the para
meters crucial for the present data, i.e., those about which the present experi
ments give information. They are discussed in the last three sections.

A2.1 Neutron- and gamma-width parameters
The neutron transmission coefficients are obtained from an optical model with 
the average parameter set recommended in ref. 42 for lower energies. They are 
fixed from the beginning, and no readjustment or search for better parameters 
has been attempted.

The giant dipole parameters in eq. (A7) are 43

rG = 5MeV, Eg=-^---- , cy = 2. (A19)

With this choice for cv, we find E, values roughly in agreement with the observed 
average gamma width 36b at the neutron-binding energy for nuclei below the 
closed shell of 208 Pb. Gamma emission is competitive only for the lowest excita
tion energies, but the magnitude of 77, is important for the contribution to the 
fission yield from very long lifetimes, i.e., for the magnitude of the long-lifetime 
component.

A2.2 General level-density parameters
The level-density parameters15 consist of the main parameter a, the parameter k, 
the two pairing gaps Jn and dp, the shell distance hco, the shell correction <5U, 
and the moments of inertia. For a and hco, we have used the values of ref. 15, 
and since K enters (weakly) only at small excitation energies, we chose k = 0.0.

The gap parameters appear only through the critical energies and the pairing 
energies; we used the same set (different for the ground states and the barriers) 
for all nuclei. This choice, with the values selected for the other parameters, gives 
an average distance of D — 27 eV between |+ levels in ^Pb at an excitation 
energy.of 6.3 MeV, in agreement with the corresponding observed quantity for 
the nearby nucleus 13|Pt. The values of a, k, hco, and A are:

a = A/9.5 MeV, hco = 41 MeV/A1/3, k — 0.0
= jB = ja = 0 8 MeV jgS = 0 5 MeV (A20)
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A2.3 Shell corrections
The shell-correction term is important for the energy dependence of the level 
density, and many prescriptions are available. We have taken <5U of ref. 44 for 
the ground-state shell correction. It increases with the distance from the closed 
neutron shell N = 126 until N = 113 (A = 195), after which it stays constant at 
about —2 MeV. Instead of this constant value, we continued the increase by 
adding 0.1 MeV for A = 195, 0.2 MeV for A= 194, 0.3 MeV for A= 193, etc. 
This has little effect on our numerical level-density results because <5U in the level 
density is multiplied by a small factor for small excitation energies where these 
nuclei play a role. However, since we use a constant smooth part Bf of the fission 
barrier (see eq. A5 and A2I), such a modification implies that the barriers Bf 
have to be decreased by the same amount, which has the important effect of 
increasing the long-lifetime component for the two lightest tungsten isotopes.

The barrier shell correction is presumably less dependent on nucleon number, 
and we have simply used a constant value <5UB = —2 MeV. It enters the barrier 
level density as an energy shift which, for large excitation energies, amounts to 
<5Ub (in this case decreasing the number of levels on top of the barrier) and for 
small excitations approaches zero. Decreasing <5UB therefore has the effect of 
decreasing the fission probability at high excitation energy while leaving the 
fission probability at low excitation energy essentially unchanged. This means a 
relative increase of the late-stage fission (long-lifetime component). Thus <5UB is 
a very selective parameter for shifting the relative fission contribution from 
short to long lifetime or vice versa. Some support for the value chosen for <5UB 
may be found in ref. 45.

A2.4 The smooth part of the fission barrier
The fission barrier is obtained from eq. (A5). The shell corrections were dis
cussed in sec. A2.3 and the pairing corrections15 are obtained from the paring 
gaps*)  in eq. (A20). Thus only the smooth barrier term Bf is left to be specified. 
For the application described here we required a constant value (independent 
of A) of Bf and the experimental fission cross sections were reproduced with

*) In ref. 15, a factor 6/7t2 was inadvertently omitted on the right-hand side, of eq. (A24). The 
quantity A in this equation is the number of protons or neutrons.

Bf = 11.3 MeV. (A21)

Inclusion of the pairing corrections (see eq. (A5)) in the smooth barrier reduces 
the value in eq. (A21) to 10.5 MeV. This may be compared to the droplet-model 
result46 of 13.9 MeV. An analysis of fission cross sections similar to ours has been 
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published by Ignatyuk et al. 47. Their results for the smooth barrier are smaller 
than the droplet-model values by approximately the same amount, e.g., 3.0 MeV 
for 200 Hg.

A2.5 Spin distribution and moments of inertia
The parameters in the expressions for the moments of inertia are c, h, and r0. 
For the radius parameter, we take the same value for all nuclei regardless of 
deformation. The ground-state shape is assumed spherical. This choice is natural 
for the lead isotopes although we assumed rotational contributions in the cor
responding level density. The ground-state moments of inertia enter only weakly 
in the fission probability and lifetime distribution, and the actual deformation 
used is therefore not critical.

For the barrier deformation we assumed the liquid-drop value, which is 
expected48 for high excitation energy where the shell effects have disappeared. For 
low excitation energy, the shell effects should be included in the determination 
of the barrier deformation. However, for the lead isotopes in question, the barrier 
(in deformation space) is broad and relatively flat40, and consequently, one may 
expect that the liquid-drop value is approached relatively quickly with increas
ing energy.

The values assumed were

r0 = 1.2fm, (c,h)gs = (1.0,0.0) ,
(c,h)B = (1.87,0.0)

The spin distribution in the initial compound nucleus is assumed proportional 
to 21+1 with a sharp cut-off at the maximum value Im . It is related to the 
complete-fusion cross section by

ffCF =^(Im + l)2, (A23)

where 2 is the de Broglie wavelength for the reduced mass and centre-of-mass 
energy. The Bass model35 gives similar expressions for the complete-fusion and 
the total-reaction cross section with corresponding maximum spin values I®F 
and IB .

The experimental fission probability Pf is determined as Pf — af/(JCF, where 
crf is the measured fission cross section and crCF is given by eq. (A23). The quantity 
Im thus enters both in observed and in calculated quantities. The value of Im is 
especially important for the fission-fragment anisotropy (see eqs. (Al 5) and (A16)), 
but it also has a significant effect on both the calculated and the observed fission 
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probabilities. With the parameter set described above, Im is chosen for each pro
jectile energy to obtain agreement between experiment and calculation. The 
resulting Im values lie between IBF and 1% determined from the Bass model.

A barrier deformation smaller than that in eq. (A22) leads to a larger 3e value 
which, in turn, requires a larger Im to reproduce the fission-fragment anisotropy. 
For example, with cB = 1.5, corresponding to the low-energy barrier with shell 
effects included, 3e is increased by a factor of 1.7 which, for the case of 97 MeV 
16O + 182W—>198Pb requires Im = 52h, i.e., 50% larger than the Bass value. For 
the same case, the barrier in eq. (A22) leads to a value 14% higher than 1% 
Thus, if Im is assumed close to the value obtained in the Bass model, the effective 
moment of inertia determined from experiment is that corresponding to the 
liquid-drop deformation.

A3. Results
A.3.1 16O + W
Table Al gives the input parameters used in the calculations together with 
other quantities of interest. This parameter set reproduces the measured fission
fragment anistotropy and fission probability and leads to a lifetime distribution 
consistent with what is observed. The main parameters are the smooth part of

Table A1. Statistical model parameters as functions of mass number A for the Pb isotopes in the 
calculations. The neutron binding energy Bn, fission barrier Bf, shell and pairing corrections <5U 
and <5P, for the ground state (gs) and the barrier (B), and the critical energy Ec, are given in MeV. 
The moments of inertia for the ground state and barrier deformations are given in units ofh2/MeV.

A Bn MJ. <5Pb Fc F c Jgs iB 
dn 3B

202 8.70 14.0 -5.56 -2.53 -3.36 6.4 7.2 96.5 47.6 302.3 56.5
201 7.20 13.4 -5.00 -1.71 -2.54 4.0 7.2 95.7 47.2 299.8 56.0
200 9.10 12.8 -4.38 -2.49 -3.33 6.3 7.1 94.9 46.8 297.3 55.5
199 7.40 12.1 -3.73 -1.68 -2.51 3.9 7.1 94.1 46.4 294.8 55.1
198 9.44 11.6 -3.17 -2.46 -3.29 6.2 7.0 93.4 46.0 292.4 54.6
197 7.68 11.1 -2.66 -1.64 -2.48 3.8 7.0 92.6 45.6 289.9 54.1
196 9.75 10.7 -2.25 -2.43 -3.26 6.1 7.0 91.8 45.2 287.5 53.6
195 7.95 10.4 -1.95 -1.61 -2.44 3.7 6.9 91.0 44.9 285.0 53.3
194 9.95 10.2 -1.83 -2.39 -3.23 6.1 6.9 90.2 44.5 282.6 52.8
193 8.13 10.1 -1.73 -1.58 -2.41 3.7 6.9 89.5 44.1 280.2 52.3
192 10.14 10.1 -1.66 -2.36 -3.19 6.0 6.8 88.7 43.7 277.8 51.9
191 8.35 10.0 -1.59 -1.54 -2.38 3.6 6.8 87.9 43.3 275.4 51.4
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the fission barrier Bf, the barrier shell correction <5UB, and the maximum spin 
Im of the initial compound nucleus. Equally important but not varied are <5Ugs 
and the effective moment of inertia at the barrier deformation.

Table A 2. The maximum spin values 1^ and IpF, corresponding to the reaction and complete
fusion cross sections in the Bass model, are given for the reaction 16O + 182 W —> 198 Pb. Also given are 
the maximum spin values Im used in the calculations, the related complete-fusion cross sections 
<7CP(mb), the measured fission cross sections a,(mb), and experimental (PrcxP) and calculated (Pfcalc) 
fission probabilities. All quantities are given as functions of 16O bombarding energy (MeV).

E16 IB IBx C F ffCF C7r pexp p calc
rf

90 34.4 28.2 34 656 122 0.19 0.19
94 38.9 32.3 38 779 216 0.28 0.30
97 42.0 35.0 40 836 302 0.36 0.37

102 46.7 39.1 43 914 429 0.47 0.47
108 51.9 43.4 47 1027 571 0.56 0.56
115 57.3 47.8 50 1089 0.62

In table A2 we compare Im to the Bass-model prediction as a function of 
energy. We note the smooth transition from the total-reaction value at low energy 
towards the complete-fusion value at high energy. These I,n values are also used 
for the other three tungsten isotopes. Table A2 also gives experimental and cal
culated fission probabilities, which differ at most by 7%.

Table A3. Experimental and calculated fission probabilities for the naturally occurring tungsten 
isotopes, for 16O bombarding energies of 90 MeV and 97 MeV.

F̂16O 182yv 183W 184W 186W

90 Calc. 0.19 0.17 0.11 0.066
Exp. 0.19 0.16 0.12 0.066

97 Calc. 0.37 0.34 0.28 0.18
Exp. 0.36 0.31 0.26 0.18

In table A3 is given the isotope dependence of experimental and calculated 
fission probabilities for bombardment with 16O at 90 and 97 MeV. The agreement 
is within 10%. The fission-fragment anisotropy is given in table A4 for the dif
ferent isotopes, and again the calculations reproduce the experimental results 
to within ~ 10%.
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Experiment

Table A4. Experimental and calculated fission-fragment angular distributions in the centre-of-mass 
system, as functions of bombarding energy (MeV) for 16O induced fission of the four W isotopes. 
The experimental distributions are normalized at 0< m = 113° to a (sin 0) 1 distribution and the 
calculated distributions are normalized to unity at 0cm = 90°.

A=182 A =183 A = 184 A=186

E 140° 172° 140° 172° 140° 172° 140° 172°

90 1.67 4.16 1.62 4.17 1.72 4.20 1.78 4.30
94 1.62 4.64 1.66 4.59 1.63 4.69 1.76 4.40
97 1.56 4.61 1.70 4.73 1.64 4.64 1.70 4.77

102 1.58 4.51 1.72 4.94 1.59 4.71 1.69 5.05
108 1.65 4.88 1.61 4.91 1.72 4.81 1.55 4.83

Calculation

A= 182 A=183 A= 184 A =186

E 170° 180° 170° 180° 170° 180° 170° 180°

90 4.10 4.72 4.19 4.87 4.04 4.66 3.82 4.36
94 4.46 5.25 4.55 5.39 4.53 5.41 4.41 5.23
97 4.57 5.43 4.63 5.52 4.66 5.60 4.61 5.54

102 4.65 5.52 4.70 5.61 4.75 5.71 4.77 5.77
108 4.71 5.59 4.78 5.71 4.81 5.78 4.88 5.92
115 4.70 5.58

The lifetime distribution can be compared to experiment only for an average 
over isotopes. As discussed in the main text the distributions are consistent with 
experiment. The calculated energy dependence confirms the prediction from 
qualitative arguments discussed in the introduction and in sec. 6.1.

A3.2 12C + W
The procedure described in sect. A2 was repeated for the reaction 12C + W > Hg. 
The resulting parameter set was given and discussed in detail in ref. 34. The smooth 
part of the barrier, Bf, was first assumed constant as for the 16O projectile, but a 
weak linear dependence on A turned out to be necessary for a good fit to the data.
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The ground-state shell corrections were obtained from those for the Pb 
isotopes by adding 0.17 MeV due to the difference in proton number. This is 
1 MeV less than expected from ref. 44. The barrier shell correction is <5UB = 
— 1.0 MeV less negative than for the Pb isotopes.

The value of Im, which changes with bombarding energy, was determined 
from the angular distribution. As for 16O + W, we found a transition from the com
plete-fusion value of Bass35 at higher energies towards the total-reaction value 
at lower energies. The other parameters were determined as described in sect. 
A2 for the Pb isotopes.

A3.3 Conclusions
The main conclusion we can draw from these results is that the model parameters 
can be adjusted to reproduce the present heavy-ion data, i.e. the isotope and 
energy' dependence of the fission probability, the anisotropy of the angular 
distribution and the isotope-averaged lifetime distribution.

The parameters are not unique, i.e., other sets exist which will also reproduce 
the data. There are two main degrees of freedom in the important set of para
meters. The lifetime distribution depends only on the difference between shell 
corrections at the ground state and at the barrier, not on each one separately. 
Furthermore, with an average temperature fixed by the lifetime distribution, the 
anisotropy depends only on the ratio between the square of the maximum angular 
momentum and the effective barrier moment of inertia. We have not explored 
these and other degrees of freedom systematically, but it is clear that the require
ment of reproducing the three different types of measurements simultaneously, 
for different isotopes and bombarding energies, sets narrow limits on the model 
parameters.

In some cases particle induced fission data for the same compound nuclei 
are available. Although our model can easily reproduce such data it is very dif
ficult, if not impossible, to reproduce both sets of data with the same model para
meters. As an example, one of the compound nuclei created by 12C bombardment 
of tungsten, 198 Hg, has been studied also through proton induced fission of gold, 
and the results have been used49 to extract the magnitude of the fission barrier 
for 198 Hg. The value obtained for Bf is about 5 MeV higher than the value found 
in ref. 34. One possibility is that the large negative ground-state shell corrections 
are strongly reduced for the high-spin states populated by heavy-ion bombard
ment. This explanation was suggested in ref. 34 and further support for it may 
be found in ref. 50.



40:7 55

References
1. W. M. Gibson, Ann. Rev. Nucl. Sei. 25 (1975) 465.
2. S. A. Karamyan, Yu. V. Melikov, and A. F. Tulinov, Fiz. El. Chast. Atom. Yad. 4 (1973) 456; 

Sov. J. Particles Nucl. 4 (1973) 196.
3. F. Brown, D. A. Marsden, and R. D. Werner, Phys. Rev. Lett. 20 (1968) 1449.
4. W. M. Gibson and K. O. Nielsen, Int. Symp. Phys. Chem. Fission SM 122/129 (1969 IAEA: 

Vienna 861 pp.) ; Phys. Rev. Lett. 24 (1970) 114.
5. Yu. V. Melikov, Yu. D. Oststavnov, and A. F. Tulinov, Zh. Eksp. Teor. Fiz. 56 (1969); Sov. 

Phys. JETP 29 (1969) 968; Yad. Fiz. 12 (1970) 50; Sov. J. Nucl. Phys. 12 (1971) 27.
6. Yu. V. Melikov, Yu. D. Oststavnov, A. F. Tulinov, and N. G. Chechenin, Nucl. Phys. A 180 

(1972) 241.
7. J. U. Andersen, K. O. Nielsen, J. Skak-Nielsen, R. Hellborg, and K. G. Prasad, Nucl. Phys. 

A241 (1975) 327.
8. P. E. Vorotnikov, Yu. F. Gurtovenko, E. Kh. Kisina, V. O. Kordynkevitch, Yu. V. Melikov, 

N. A. Morogov, Yu. D. Oststavnov, L. N. Syutkina, A. F. Tulinov, and N. G. Chechenin, Nucl. 
Phys. A 281 (1977) 295.

9. J. U. Andersen, N. G. Chechenin, A. S. Jensen, K. Jørgensen, and E. Lægsgaard, Nucl. Phys. 
A 324 (1979) 39.

10. S. A. Karamyan, Yu. V. Melikov, F. Normuratnov, O. Otgonsuren, and G. M. Solovyeeva, 
Yad. Fiz. 13 (1970) 944; Sov. J. Nucl. Phys. 13 (1971) 543.

U.S. A. Karamyan, Yu. Ts. Oganesyan, and F. Normuratnov, Yad. Fiz. 14 (1971) 499; Sov. J. 
Nucl. Phys. 14 (1972) 279.

12. J. U. Andersen, E. Lægsgaard, K. O. Nielsen, W. M. Gibson, J. S. Forster, I. V. Mitchell, and 
D. Ward, Phys. Rev. Lett. 36 (1976) 1539.

13. H. Hagelund and A. S. Jensen, Physica Scripta 15 (1977) 225.
14. A. S. Jensen, Proc. IAEA Int. Conf, on Neutron Physics and Nuclear Data for Reactors, Harwell, U. K., 

Sept., 1978.
15. A. S. Jensen and J. Sandberg, Physica Scripta 17 (1978) 107.
16. H. C. Britt and A. R. Quinton, Phys. Rev. 120 (1960) 1768.
17. R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic, New York, 1973) p. 234.
18. E. Lægsgaard, Nucl. Instrum. Methods 162 (1979) 93.
19. T. Sikkeland, Phys. Rev. 135 (1964) B669.
20. J. H. Barrett, Phys. Rev. 133 (1971) 1527.
21. J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34 (1965) No 14.
22. V. E. Viola, Jr., Nucl. Data Tables Al (1965) 391.
23. J. U. Andersen, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 36 (1967) No 7.
24. J. U. Andersen, O. Andreasen, J. A. Davies, and E. Uggerhøj, Radiat. EfT. 7 (1971) 25.
25. S. T. Picraux, in: Ion Beam Surface Layer Analysis, edited by O. Meyer, G. Linker, and F. Kappeln 

(Plenum, New York, 1976) 527.
26. Y. Hashimoto, J. H. Barrett, and W. M. Gibson, Phys. Rev. Lett. 30 (1973) 995.
27. H. E. Schiøtt, E. Bonderup, J. U. Andersen, and H. Esbensen, Proc. 5th Int. Conf, on Atomic 

Collisions in Solids, Gatlinburg, 1973 (Plenum, New York, 1975) 483.
28. J. U. Andersen and J. A. Davies, Nucl. Instrum. Methods 132 (1976) 179.
29. J. U. Andersen and L. C. Feldman, Phys. Rev. Bl (1970) 2063.
30. S. U. Campisano, G. Foti, F. Grasso, I. F. Quercia, and E. Rimini, Radiat. EfT. 13 (1972) 23.
31. D. Gemmell, Rev. Mod. Phys. 46 (1974) 129.
32. T. Sikkeland, J. E. Clarkson, N. H. Steiger-Shafri, and V. E. Viola, Phys. Rev. C3 (1971) 329.



56 40:7

33. I. Halpern and V. M. Strutinsky, Int. Conf, on Peaceful Uses of Atomic Energy, Geneva, vol. 15 
(U.N., N.Y., 1958) 408.

34. J. U. Andersen, A. S. Jensen, E. Lægsgaard, K. O. Nielsen, J. S. Forster, I. V. Mitchell, D. Ward, 
and W. M. Gibson, to be published in Int. Symp. Phys. Chem. Fission, IAEA-SM/241-C7 (1979 
IAEA: Jülich).

35. R. Bass, Nucl. Phys. A231 (1974) 45.
36. J. E. Lynn, Theory of Neutron Resonance Reactions (Clarendon Press, Oxford, 1968) a) p. 325 ; b) p. 316.
37. J. E. Lynn, Systematics for neutron reactions of the actinide nuclei, Harwell Report 1974, AERE-R7468, 

p. 26.
38. S. Bjørnholm, A. Bohr, and B. Mottelson, Proc. Int. Symp. on Physics and Chemistry of Fission, 

Rochester, 1973; T. Døssing and A. S. Jensen, Nucl. Phys. A 222 (1974) 493.
39. M. Brack, T. Ledergerber, H. C. Pauli, and A. S. Jensen, Nucl. Phys. A234 (1974) 185.
40. M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, Rev. Mod. 

Phys. 44 (1972) 320.
4L R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic, New York, 1973) p. 184.
42. C. M. Perey and F. G. Perey, Atomic Data and Nuclear Data Tables 17 (1976) 1.
43. L. M. Bollinger, Proc. Int. Symp. on Nuclear Structure, Dubna (1968) p. 317.
44. J. W. Truran, A. G. W. Cameron, and E. Hilf, Int. Conf, on Properties of Nuclei far from the 

Region of Beta Stability, Leysin, Switzerland (1970) p. 275.
45. U. Mosel, Phys. Rev. Cd (1972) 971.
46. W. D. Myers, Droplet Model of Atomic Nuclei (IFI/Plenum, New York, Washington, London, 1977).
47. A. V. Ignatyuk, M. G. Itkis, V. N. Okolovich, G. N. Smirenkin, and A. S. Tishin, Sov. J. Nucl. 

Phys. 21 (1975) 612.
48. R. Vandenbosch, Phys. Rev. C7 (1973) 2092.
49. L. G. Moretto, S. G. Thomson, J. Routti, and R. C. Gatti, Phys. Letters 38 B (1972) 471.
50. M. E. Faber, A. Faessler, and M. Ploszajczak, Int. Symp. Phys. Chem. Fission, IAEA-SM/241-C5 

(1979 IAEA: Jülich).

Indleveret til Selskabet september 1979. 
Færdig fra trykkeriet april 1980



Secondary Electron Spectra from 
Dielectric Theory

By DAVID K. BRICE and PETER SIGMUND

Det Kongelige Danske Videnskabernes Selskab 
Matematisk-fysiske Meddelelser 40:8

Kommissionær: Munksgaard

København 1980



This work was supported in part by 
the Danish Natural Science Research Council 
and the U. S. Department of Energy, DOE, 

under Contract AT(29-1) 789.

Angular and energy distributions of electrons excited by a heavy charged particle penetrating an 
electron gas have been studied theoretically for a range of electron densities. The calculations are 
based on the self-consistent dielectric theory of Lindhard in which the properties of the electron gas 
are described by a frequency and wave-vector dependent dielectric function. The excitation cross 
section has been investigated in the present work for a broad range of incident projectile velocities, 
and numerical results are presented both for doubly and singly differential forms of the excitation 
spectrum. An analytical approximation is developed for the case of low projectile velocities, and 
comparison with numerical results indicates that the analytical form is quite adequate for velocities 
up to near the Fermi velocity. For higher incident velocities the emitted energy spectrum is char
acterized by a resonance for electron energies in the range ~ 1-4 times the Fermi energy; at electron 
energies about 10 times the Fermi energy the spectrum approaches that given by the Rutherford 
cross section. The electron energy at which the resonance occurs is independent of the projectile 
velocity, but is a slowly varying function of the electron density. The angular position of the reso
nance is, however, a strong function of the projectile velocity, occurring first in the forward direction 
at a critical velocity, vc, moving to higher angles with increasing projectile velocity, and limiting 
to lateral (90°) emission at high incident velocity. These results may form a basis for more detailed 
studies of electron emission in both atom-atom and atom-solid collisions.

DAVID K. BRICE1 PETER SIGMUND2 
H. C. Ørsted Institute,

DK-2100 Copenhagen 0., Denmark
1 : Permanent address:
Sandia Laboratories
Albuquerque, New Mexico, 87185, USA

2 : Present address :
Physics Institute, 

Odense University
DK.-5230 Odense M, Denmark

© Det Kongelige Danske Videnskabernes Selskab 1979
Printed in Denmark by Bianco Lunos Bogtrykkeri A-S. ISSN 0023-3323. ISBN 87-7304-106-8



Table of contents Pa(i(,
1. Introduction .................................................................................................... 5
2. Basic Equations............................................................................................... 6

A. The Model................................................................................................. 6
B. The Dielectric Function........................................................................... 7
C. The Transition Rates............................................................................... 9
D. The Stopping Cross Section..................................................................... 10

3. Integrated Cross Sections.............................................................................. 10
A. Analytical Approximation: Region I ..................................................... 14
B. Analytical and Numerical Results: Regions II and III ...................... 18

4. Doubly Differential Cross Section................................................................. 22
A. Analytical Approximation: Region I ..................................................... 25
B. Analytical and Numerical Results: Regions II and III ...................... 28

5. Summary and Discussion............................................................................... 32
Acknowledgements......................................................................................... 33
References........................................................................................................ 34





40:8 5

1. Introduction
The free electron gas is a convenient system for model studies of atomic and solid
state properties. In particular, this system offers unique possibilities of studying 
the interaction of energetic charged particles with matter, as far as the inter
action with electrons is concerned. The free electron gas in the self-consistent 
picture developed by Lindhard1 allows a treatment of the stopping of a charged 
particle with essentially no limitations on the range of particle velocities to be 
considered, thus giving qualitative insight into the partition of energy that would 
be quite difficult to obtain by other means.2 When combined with the Thomas- 
Fermi principle, this dielectric theory provides estimates of stopping parameters 
that exhibit basic scaling properties as a function of atomic number. 3,4

The dielectric theory has implications on the excitation spectrum of an electron 
gas. While collective excitations (plasma modes) occur in rather well-defined 
energy quanta, and thus show up in a number of well-studied phenomena,5 the 
situation is different with regard to single-particle excitations. In a free electron 
gas, single-particle excitations form a continuous spectrum. Therefore most 
discrete systems would seem to call for a more elaborate treatment, unless atten
tion is given to high levels of excitation and, especially, ionization. These pheno
mena have received less attention from the point of view of the dielectric theory 
than the stopping process.

In the present study, the spectrum of electrons excited by an energetic charged 
particle has been analyzed within the framework of the dielectric theory. Both 
energy and angular distributions of electrons have been evaluated as a function 
of the velocity of the primary particle. Therefore, the information extracted 
from the model is more specific than the predictions on energy loss, where 
primary velocity and Fermi velocity are the only variables. Both the capabilities 
of, and limitations to the model are expected to show up more clearly in differ
ential quantities than in integrated ones.

Our main motivation for this study was a need for universal, and not neces
sarily very accurate angular and energy distributions of electrons after excitation 
by charged particles. Such spectra are called for in the analysis of a wide range 
of phenomena in radiation physics, chemistry, and biology.6 Although quantita
tive studies have been made of specific systems, both experimental and theoretical, 
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we were missing the qualitative guidelines that the dielectric model provides in 
stopping theory. We started with a numerical evaluation of doubly differential 
electron spectra from the dielectric theory, similar to what was done by Ritchie 
et al. 7,8 for the energy spectrum. Later the numerical evaluation of electron 
spectra was followed up by an analytical study. The theory in its present form, 
we believe, provides insight into the qualitative behavior of secondary-electron 
spectra from light-ion bombardment, in particular the possible occurrence of 
peaks in the energy and angular distributions, the correlation between the energy 
and angular distribution as a function of particle velocity, and the range of angles 
that is accessible for secondary electrons at any given set of particle and electron 
energies. We had hoped to present Thomas-Fermi scaled spectra at the same time, 
but with an increasing amount of available analytical results we found that 
weithin the time limits imposed, it seemed most appropriate to present the free- 
electron results separately, and reserve applications to a later occasion.

2. Basic Equations
The basic equation governing the excitation of secondary electrons by a charged 
particle traversing a degenerate Fermi-Dirac gas of electrons has been derived 
by Ritchie.9 His primary attention was directed toward the effects of the target 
on the incident projectile, and consequently the secondary electron spectrum has 
not been discussed in great detail. In the present section we will present a brief 
derivation of the basic equations for both the excitation cross section and for 
the single-particle contribution to the stopping cross section. Our procedure 
differs from that of Ritchie, but is consistent with Lindhard’s derivation of the 
dielectric function. The derivation also makes evident the limitations of the 
procedure, and serves to introduce the notation which will be used throughout 
the paper.

A. The Model
We consider a point particle of charge ex and velocity v. which traverses a degen
erate Fermi-Dirac gas of electrons. The fractional energy and momentum losses 
suffered by the particle through its interaction with the system are assumed to 
be small over a time period which is long compared with pertinent electronic 
periods, so that v can be taken as a constant. This assumption will be quite good 
for a massive particle traversing the system, or for a highly energetic particle 
with mass comparable with the electron mass. The charge density, (?(r,Z) asso-
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ciated with the perturbing particle is given by

=^<5(r-vf) . (2.1)

where <5 represents the Dirac delta function.
The local electric potential <Z>(r,Z) which results from the charge density (2.1) 

includes the Coulomb field of the incident projectile as well as the induced field 
which results from the dynamic response of the electronic system to the perturba
tion. In the self-consistent treatment of Lindhard1 the many-body problem of 
the interaction between an incident projectile and the electrons and between 
the electrons of the system themselves is resolved in the dielectric function 
£(Æ,co) of the system. By definition, e(Ar.co) connects 0(r,i) and Q(r,f) through 
the relation

ø(Æ.co) = 4æ^(Æ,co)/å:2£(/c,co) , (2.2)

where ø(Æ,co) and £(Æ,co) are the Fourier transforms of 0(r,f) and ß(r,/), 
respectively. For a function g(r,t), the Fourier transform g(Aqco) is defined such 
that

£(M) = (BT) 1 £ ■?(*,«) C(*(2.3)
k.m

where periodic boundary conditions in the volume V and time interval T are 
assumed. Both V and T are taken to be large, and will ultimately be allowed to 
limit to infinity.

Equations (2.1) —(2.3) give the perturbing potential

47tq y, ôh v^e‘^ r-œt} 
F à Å2£(fc,co) (2-4)

ø(r, Z) as given in Eqn. (2.4) is the effective interaction potential between the 
incident projectile and the electrons of the system. This field is the generalization 
for the system of electrons of the Coulomb interaction between two isolated 
charged particles.

B. The Dielectric Function
The dielectric function e(k, w) has been evaluated for the free Fermi gas by 
Lindhard1 within first-order time-dependent perturbation theory. The electrons 
of the system are assumed to occupy states described by single-particle free- 
electron wave functions, ^(r,Z), where

(2-5)
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The single-particle energies, E, are given by

(2-6)

where h is Planck’s constant divided by 27i and m the electron mass. The system 
is taken initially to be in its ground state so that all states are occupied up to the 
Fermi energy eF given by

(2.7)

where n is the electron density in the system, and vF and kF are the magnitudes of 
the velocity and wave vector, respectively, of electrons having energy eF.

The results of Lindhard’s analysis are conveniently expressed in terms of the 
variables u, z, and /2, defined by

and

u — a)/kvF (2.8a)

Z = k]2kF (2.8b)

(2-9)

where e is the electronic charge. In these variables

where

and

(z + u)z]ln 1
z + u— 1

+ [l-U-W)2]//z —Z/ + 1 I]
£-a-l|j

for k + «| < 1 ,

for \z — w| < 1 < k +w|

(2.10)

(2.111

(2.12a)

(2.12b)

0 otherwise. (2.12c)
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C. The Transition Rates
The excitation spectrum and the stopping cross section can be obtained from the 
perturbing potential, Eqn. (2.4), and electron wave functions, Eqn. (2.5), through 
a straightforward application of first-order time dependent perturbation theory. 
The use of first-order theory is valid as long as the transition rates remain small, 
and it is consistent with Lindhard’s form of the dielectric function. It is our aim 
in the present work to discuss some qualitative features of the single-electron 
excitation spectrum, and therefore we disregard higher order effects10, as well as 
many-body corrections to the Lindhard dielectric function.

In the present section we will write

E(fc)=E0; k = k0, a> = co0 = Eo / (2.13a)

for the initial electronic states (i.e., for \k\< kF), and

E(fc)=E15 k = kx, a) = (o1=E1/h (2.13b)

for the final states (\k\> kF). If WÇk^d3^ represents the probability per unit 
time for excitation of electrons into states k} in the E-space volume element 
d3kl, then first-order time-dependent perturbation theory yields

JT^)^ =2v-M(£i)^!rfßi S
4^^e 

Vk2e(k,k -v}
■ 0{EX — Eq — hk ■ v), (2.14)

where k — kY—k0, JVi (Ex) is the density of states at E\, and dQ} a solid angle 
at k}. The extra factor of two in front of the standard expression comes from the 
sum over spin states which are not altered by the potential (2.4). For large F the 
sum in (2.14) can be expressed as an integral through

and, likewise

(2.15a)

X (£,)</£, =^-4^,. (2.15b)

This yields

1
Æ2e(Æ,Æ-v)

2

<5(0?! — co0 — k • v) . (2.16)

The integration over vectors kQ is restricted to k0< kF. The transition rate can 
also be expressed as a cross section </3a(A:1) by
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d3a(kP) = W^-d3kv (2.17)
n v

Eqn. (2.16) has already been derived by Ritchie (Eqn. (4.14) in ref. 9; his equa
tion contains a spurious factor /?-1).

The introduction of a cross section according to eq. (2.17) should at this 
point be taken as a formal step that will allow a direct comparison with the 
corresponding single-electron (or binary-encounter) cross sections at all stages 
of the theory. The physical significance of a single-electron cross section in a 
theory that takes into account the mutual interaction between target electrons 
is less evident, and we do not claim that there is any in a strict sense. Both Lind- 
hard1,2 and Ritchie7’9 and coworkers avoid introducing such cross sections 
altogether and restrict their analysis to quantities characterizing the interaction 
with the medium rather than with the individual electron. Thus, any cross sec
tions discussed in the following become physically meaningful when multiplied 
by the electron density n to become inverse mean free paths.

D. The Stopping Cross Section
Lindhard and Winther2 have previously discussed in detail the stopping cross 
section S(c) of the free electron gas for an incident charged particle. They take 
as a starting point for their discussion the electric field resulting from the potential 
of Eqn. (2.4) which acts to retard the motion of the incident particle.11 1 The 
contribution of the single-particle excitations to the stopping cross section can 
also be found from the above excitation cross section.

The basic transition probability is multiplied by the energy transfer ha> before 
summation over the initial states. An extra factor of hw =tik-v therefore appears 
in the equation corresponding to (2.16). The resulting expression is

<2 18> 

where k0< kF< kr defines the integration limits. This expression will be discussed 
in more detail in the following section.

3. Integrated Cross Sections
It is convenient first to study the cross section integrated over all ejection angles, 
i.e., the energy distribution of ejected electrons. This will be done in the present
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section. In addition, the total cross section will be discussed briefly as well as 
the connection with the stopping power. The results of this section overlap to 
some extent with those of the study of Ritchie et al. 7-9

After introduction of the vector k rather than Ar0 as the integration variable, 
(2.16) reads

hk2 hk-ky
— +----------k
Im m
\Pe(k,k-v)\2

with the boundary

kv> ^-(^-^>0 (3.1a)
2m

corresponding to k0<kF. By means of spherical coordinates, and integrating,

Let us now introduce Lindhard’s variables z and w, Eqn. (2.9). Eqn. (3.2) becomes

we obtain

with

, ff3 2e2e2m do — L/3cr — kxdkxJ J nvirtr
4n

r d*k
k\k2e(k,k-v)\2 (3-2)

(3.2a)

do =
i. [Ï Zdzdu 

nmv2^ 1JJ'?e(^M)|2 (3-3)

with boundaries on the integrals

(3.3a)

u + z^ kJkF (3.3b)

u < vjvF . (3.3c)

Before analyzing (3.3), we also carry out the integration over kx in order to obtain 
the total cross section. This yields

Jå, = Max(£f.. kp(u+z'))

2nmv JJ \z e(^,w)| (3-4)
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with the bounds

|£ - U\ < 1 (3.4a)

0 < z (3.4b)

0 < w < v/vF. (3.4c)

The integration region is the total accessible range for single-particle excitation; 
the term in the brackets of (3.4) is readily identified as |<4(^,w) in the range 
|£ — u\< 1. Therefore, (3.4) can be rewritten

u nnmv' Jo

?

Im dz v Jo .

|£~ u\ < 1

(3-5)

The stopping cross section S is a similar integral; it can be found by adding 
a factor

Æ(co, —co0) = hk-v = imvpuz

in (3.5). Then,

”» u/ipoo

(^^Single Particle (3-6)

which is identical with Lindhard’s expression1 for the stopping cross section, except 
that the integration is restricted to single-particle excitations, |£ — u\< 1. This 
was to be expected from the derivation procedure. The expression (3.6) has 
been studied extensively in ref. 2. The total cross section, Eqn. (3.5), can be 
evaluated in the same manner. A detailed study has been published recently.8 
Rather than evaluating that quantity separately, we go back to the differential 
quantity da, and mention some results concerning a as a check on du where 
appropriate.

Fig. la shows the area of integration in Eqn. (3.3) for a number of values 
of ki/kp . It is seen that the integral extends over a segment of the stripe \u — z\ < 1 ; 
for v>vF the size of this segment is independent of v in the range of kx-values 
limited by

(3.7a)



40:8 13

and decreases towards zero in the range

(3.7b)

For v/vF < 1, the integration region depends on v for all values of kx (Figure lb).

in the (z, u) plane for v>vF.
Fig. lb. Limits of integration in the (z,u) plane 
for Eqn. 3.3 for v< vF.

These relations provide a classification scheme for the evaluation of do 
according to Eqn. (3.3). For practical purposes, it is convenient to include one 
more dimension in such a scheme, namely the role of the resonance point de
fined by2

eUc5wc)=0; wc=^c+l (3.8)

The function do will normally have a singularity at that value of kx where the 
point (Fig. la) passes through the resonance point (zc, ucY According to (3.3c), 
this is only possible for

v>ucvF = vc (3.9)

Thus, vc represents a “critical” velocity above which a singularity occurs in the 
excitation spectrum. From (3.8) and (2.11), we find uc to obey the relation

(»c-D2 + <[>-»Jog^] = 0. (3.10)
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Fig. 2. Portion of (f,^) plane showing the classi
fication scheme for projectile velocity and exci
tation Å-vector. Region I, 0< v< vF; region II, 
vF< v< vc\ region III vc< v.
The labels A and B indicate -values for which 
the reduced integrated excitation spectrum, Eq. 
(3.22), is independent of v and dependent on v, 
respectively.

Now, we have three regions of particle velocity (Fig. 2). In region I, v<vF, the 
integral in (3.3) depends on v, and the allowed range of /^-values is

1 <k1/kF<2 — + 1 . (3.11)
^F

In region II, vF < v < vc, and region III, v> vc, the integral (3.3) is independent 
of v for Aq-values in the range (3.7a), called A, and dependent on v in the range 
(3.7b), called B; in region III, da has a singularity at

< = (2z/c— 1)Ä^ , (3.12)

while such a singularity does not occur in region II (nor I).
The singularity in the excitation spectrum due to the resonance in e(^,w) at 

the point (£c,«c) results from the excitation of virtual plasmons with wave vector 
kc and frequency coc = vFkcuc. These plasmons correspond to the shortest wave
length collective excitations which are supportable by the free electron gas.

A. Analytical Approximation : Region I
A simple analytic approximation is possible in region I in the limit of v < vF . 
The area of integration in the z~ u plane as defined by Eqns. (3.3a-c) is indicated 
in Fig. lb, and Eqn. (3.3) reads, to lowest order in v/vF,
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eiX2
nmvvp

zdz
£2e(£,0) 2

where

so that

with

(3.13)

(3.13a)

(3.14)

(3.14a)

and

0 < z*  < 1 ■

* This approximation is identical with the one used by Lindhard and Winther,2 but differs from 
that used by Ritchie.9

(3.14b)

In the evaluation of (3.14), the approximation^ (o,z} — 1 ~$Z2 has been made. * 
The form (3.14) offers itself for introduction of the excitation energy above the 
Fermi energy

(3.15)

Then

and

Z*
51

2mvvF

0 < £j < 2mvvp .

(3.16)

(3.17)

Integration over der leads to
rapp = 0,app^ 2^É^{aarCtgZ_7+/}’ (3,18)

an expression that can be obtained directly by evaluation of (3.4) in the limit 
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vIvF < 1. Eqn. (3.18) is equivalent with Ritchie’s corresponding result (Ref. 9, 
Eqn. 6.15) when proper account is taken of the fact that his approximation for 
fx {u,z) leads to an a'2 = 1 —/2/2 in place of a2 as given by our Eqn. (3.14a).12

Going back to the energy spectrum we write (3.14) in the form

^app =2nh2vFv (l + 2//3)’42^) (3-19)

where

S(?) = 1— £*+-£*(—+~) arctg Z "-1. (3.20)
\Z a/ & Z ! az*

a x

Fig. 3. Normalized low velocity excitation cross 
section, Eqns. (3.19) and (3.20).

has been plotted in Fig. 3. Note the very simple scaling properties as a function 
of the primary velocity v(z* y_1). In particular, note that for a wide range of 
electron densities (0.03 < /2 < 0.3) the curves for g are almost linear on the 
semilogarithmic plot of Fig. 3. Figs. 4.a-c shows the ratio of the actual (numer
ically evaluated) cross section (3.3) and the analytical approximation formula 
(3.14') for three different values of the density parameter /2, and three values of 
the ratio v/vF. We conclude that for rough estimates, the analytical approxima
tion will be satisfactory at all allowed values of the electron energy at values of v 
not too close to the Fermi velocity.
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Fig 4. Excitation 
cross section 
normalized to the 
analytical approxi
mation for low 
incident projectile 
velocities,
a) z2 =0.01,
b) Z2 = 0.1,
c) / = 1.0.

2 v

2v
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B. Analytical and Numerical Results : Region II &.III
For v>vF, it is convenient to compare our results with the Rutherford cross 
section averaged over the Fermi distribution of initial electron velocities. This 
averaged cross section da K is found be setting e= 1. Eqn. (3.3) yields, then

(3.21)

with

1 . . . 0 < £j < 2mv2 — 2vpF

2mv2 — 2vpF < £] < 2mv2 + 2vpF

0 ... £j > 2 mv2 + 2 vpF .

(3.21a)

£, is defined in (3.15), and

px = hk1 

pF hhF .

(3.21b)

In the region where = 1, (3.21) is identical with the conventional 
Rutherford spectrum for target electrons initially at rest except that the electron 
energy here is measured from eF. The smearing of the edge (g 7^ 1) is then caused 
by the ground-state motion in the Fermi gas. The function g1 (fij has been plotted 
in Fig. 5 with the expression

£1 — (2mv2 — 2vpF) (3.21c)

as the independent variable. It is seen that for v>2vF, this function is essentially 
independent of v.

In the more general case, we can write

da _3/£1\2ff zdzdu 
daR 8\eF) JJ \z2e(z,u)\2 ’

(3.22)

where the Rutherford cross section daR is the expression (3.21) for g} = 1. This 
form does not contain the velocity at all in regions IIA and IIIA, and is there
fore a universal function of £,, dependent on the density parameter z2 only. In
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Fig. 5. Cutoff region for daR, Eqns. (3.21) 
and (3.21a).

Ei/Cf

Fig. 7. Peak electron velocity (z’i/i'jr) versus 
electron density, expressed by X2 = eilnhvF, 
cf. eqn. (3.25).

da

Fig. 6. Excitation cross section da, normalized to daR, for a series of values of the electron density 
(cf. eqn. 3.22). For this plot & = 1. The numerical integration has been performed by J. Schou.
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regions IIB and HIB, the universal function is to be multiplied by some function 
g1 (fij, v; /2), with 0 < g1 < 1 and g1 monotonically decreasing with increasing £, . 
Moreover, for large v (region III) we must have

(3.23)

since £—> 1 at large z, i.e., large values of k.
Fig. 6 shows the expression (3.22), evaluated numerically for v/vF >>1. Obvious

ly, da can be determined directly from Fig. 6 in the regions IIA and IIIA 
where gx = 1.

Fig. 6 shows that substantial (~25%) deviations from straight Rutherford 
scattering occur at electron energies

e^lOfip, (3.24)

the deviations being somewhat dependent on the density parameter /2. Most 
spectacular, of course, is the peak at the position

£u = 4z/c(uc-1)£f , (3.25)

following from (3.12), with uc given by (3.10). This relation has been plotted in 
Fig. 7. It is seen that the peak position varies slowly with /2, and so does the 
detailed shape of the peak.

Ritchie et al/'8 have previously pointed out that the cross section da/daR is 
a universal function of £t, independent of projectile velocity, for £] < 2mv2 — 2vpF,

Fig. 8. Excitation cross sections, da/daR, 
in region II. a) x2 = 0.01, b) /2 — 0.1, 
c) X2 = 1.0.
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and have evaluated an expression similar to (3.22) for incident electrons. Their 
spectra also show a peaked behavior with the peak occurring at the position 
indicated by (3.25).*

*See, for example, Fig. 4 of the second paper of Ref. 7 where the value r, = 2.07 corresponds 
to/2 = 0.343.

Figs. 8a-c show electron spectra, evaluated numerically, and normalized to 
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Eqn. (3.21), i.e., including that region for which gx< 1. Curves are shown 
(dashed) for v = vF, va, and vc, where va = (vF + vc)/2. Also shown are the 
universal curves from Fig. 6 (solid). (Note the different horizontal scales on the 
various parts of Fig. 8). The velocity uF is the boundary velocity between regions 
I and II, vc is the boundary velocity between regions II and III, and va lies in 
the center of region II. For the more dense gases (/2<0.1) the presence of a 
resonance is already noticed at y — va, although the singularity in the spectrum 
occurs only for v > vc. Also, for these cases it is seen that with v in region III the 
actual cross section will differ by less than 10% from that determined from the 
universal curves (providing that the function g^ is included in daFor /2 > 0.1 
at v = vc, deviations ~ 25 /o are seen between da/daR and the universal curve; 
therefore v must be somewhat greater than vc before the universal curve becomes 
an accurate representation of da/daR. It should be noted, however, that these 
deviations are important only for region 11 IB in which da is a rapidly decreasing 
function of yj.

4. Doubly Differential Cross Section
In this section, the full angular and energy distribution of excited electrons is 
analyzed on the basis of eqs. (3.1) and (3.1a). The procedure is very similar to 
the one sketched in Section 3. We first introduce spherical coordinates for both 
k and kx, with polar angles 6 and against v as the axis. Then, eqn. (3.1) reads

where z, u, and /2 have been introduced in Eqns. (2.8) and (2.9), (p is an azimuth, 
and z;. — cos 6r. We also have

M = — cos 0 . (4.2a)
VF

and the limit of integration (3.1a) reads
p

4^> -ff-l > 0 .
F

(4.2b)

The integration over (p can be carried out in (4.1), whereafter d2a reads 
-1/2

(4-3)
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with the extra integration condition that the square root be real, i.e.,

U + [rj-rj! ^U + w)] (4-4)

The condition (4.2a) provides a hyperbolic boundary for the integration in 
the z — u plane, curve Q in Fig. 9, while condition (4.4) provides an elliptical

Fig. 9. Limits of integration for Eqn. 4.1 in the 
(z,u) plane. C, corresponds to Eqn. (4.1a), C2 
corresponds to condition (4.4), and C3 corre
sponds to condition (3.3b) (Fig. 1).

boundary, curve C2. We note that the ellipse is tangent to the line z + u = viIvf 
at point P and also to the line u = v/vF at point Q,, and thus the integration area 
for d2o lies the integration area for do (Fig. la), but is tangent to those 
boundaries. The points P and (^are given by

«(/>)=>?,- (4.5a)
Up V F V F

and

40) = — »71--, «(0)=^F- (4.5b)
Vp VF

It is thus clear that the elliptical boundary determines the upper bound on the 
«-integration.

For fixed y, , Eqns. (4.5a and b) indicate that the points P and Q~ move 
along their respective tangent lines as is varied. This motion is accompanied 
by rotation and change in magnitude of the axes of the ellipse so that from the 
standpoint of an observer stationed on either of the tangent lines the ellipse would
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appear to roll along the tangent line as varies. This rolling motion allows the 
integration area to vary in such a way with so as to eventually cover the 
entire boundary region given in Fig. la). It is noted that for rjx = 1 the points P 
and are identical and the integration area degenerates to a straight line. The 
cross section d2o does not become zero in this case, however, because of the 
integrable singularity in the integrand.

The area of integration in Fig. 9 is only slightly smaller than that for da 
(Fig. la) so long as P and Q~ are well separated and P remains within the two 
straight lines that bound the region of single-particle excitations, u = z ± 1, i.e.,

2^ — yF<; 2^+ yF (4.6a)

or

The integration area decreases rapidly outside this range. An interesting special 
case, which depends on the form of e(g,u), is the position of the resonance. Accord
ing to (3.12) it occurs at

= 2wc-l ;

in order to specify the angular region where a peak may be observed, we note 
that the integration area in Fig. 9 includes the resonance point (zc, uc), only when 
the point P coincides with the resonance point, i.e., according to (4.2)

Hc = vfucIv- (4.7)
However, because of the rolling movement of the ellipse one may expect the res
onance to be broad as a function of r]x at a given v1/vF in the region near r]c.

We now consider the case where the ellipse becomes tangent to the hyperbola 
at a single point, i.e., where the two points of intersection degenerate to one. In 
this case, the integration area has approached zero. This determines the bounds 
on electron velocity and ejection angle at a given primary velocity. Solving (4.2a) 
and (4.4) for u2, and setting the discriminant equal to zero yields

vi _ (2y + yF)yF £i_ . (2v-vF)vF
2v 2vV1 71 2« 2^ (4.8)

For i>1 >2v — vF the right hand side of (4.8) is greater than 1 and the upper bound 
on rit is 1 in this case. This relation is illustrated in Fig. 10. The reader may keep
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Fig. 10. Values of the excitation velocity, vt, and 10
cosine of the emission angle, rfa, which are 
allowed by conservation of energy and momen- °5

turn.
T)i 0.0

-0.5

-1.0

in mind that it is based only on conservation laws as well as the Fermi distribution 
at zero temperature, while the dielectric function need not be specified. Thus, 
no spectral information is contained in Fig. 10 except that the intensity is zero 
outside the shaded area at any given velocity v.

k,/kF

T1
“I .v/vF = wo ..

-
v/vF -1000

............................................. I

10 20 30

A. Analytical Approximation : Region I
An analytical approximation is possible on Region I in the limit of vF, as 
was the case for da. Ignoring u in comparison with z, and working in the (^,t?) 
rather than the (£,w) — plane, we find from (4.3),

Ttnmvvd2a = (4-9)

where the area of integration corresponds to the one indicated in Fig. 9, but with 
the simplifying feature that the ellipse C2 has its axes parallel to the diagonals on 
the (z,u) plane. Therefore, (4.9) reads

nnmvv
arc cos r-Zih

vd-7f)(i-a
(4.9a)

after integration, where

(4.9b)V1 VF
2v

and Z- and z+ represent the z coordinates of the upper and lower point of inter
section, respectively, of the hyperbola and the ellipse as indicated in Fig. 9.

Again we approximate

£2e(£,0)—>aV + /
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Fig. 11. Low velocity {v<^vF} values 
d2<j/d2aippus r = (v} — vf)I2v for several 
values of , cf. eqn. (4.10) for fl^CTapp. 
a) / = 0.01, b) / = 0.1, c) x2 = 1.0.

0.8 1.0
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where a is given by (3.14a). Then, the integration in (4.9a) can be carried out. 
The resultant expression for d2o is

jLL deidrh
app ~ 16 mve* (a2+/)

[1-&M1)]

for — 1+2r</?! < 1 ; r< 1, 

(4.10)

and where
.(,») =________ («2 + 2/!)r-A,________

[(«2r+z2'Z1)2 + Z2(«2 + Z2)(l->712)]1'2' (4.10a)

We note also that within this approximation (y < yF)

(4.10b)
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i.e., r is proportional to the excitation energy £j above the Fermi level. Figs. 
11 a-c show spectra, evaluated numerically, normalized to the analytical approxi
mations (4.9) for four different values of rjY, and three values of v/vF . These curves 
are analogous to the integrated spectra in Figs. 4a-c, respectively. In Figs. 11, 
the three values of v/vF are also 0.2, 0.6, and 0.8, corresponding to the dash-dot, 
solid, and dashed curves, respectively. The drop to zero on the leading edge of 
each spectrum occurs because <T<7.ipp does not go to zero at the right-hand 
boundaries indicated in Fig. 10, while the exact spectra do.

While the integrated spectra of Figs. 4 do not show large deviations from 
<ycrapp, the doubly differential spectra of Figs. 11 show considerable departure 
from d2aapp for both the forward and backward directions. Despite this, the 
approximate cross section, Eqn. (4.8), can be quite useful in obtaining spectra 
for other values of /2 by interpolation between curves such as those displayed in 
Figs. 11. For example, although the numerical values of the absolute cross section 
differ by more than two orders of magnitude for %2 = 1 and /2 = 0.01, the relative 
cross sections of Figs. 11 a-c differ by a factor less than 2 for most values of , r, 
and v. This is made particularly evident when angular distributions are compared 
as in Figs. 12a-c. We thus conclude that the approximate cross section, </2<rapp, 
is quite useful in normalizing the spectra in region I, and that it may be accept
able for many purposes even for velocities v approaching the Fermi velocity.

B. Analytical and Numerical Results : Regions II and III
As in the case of the integrated cross section it proves convenient to compare the 
numerical results for d2(J with the Rutherford cross section, appropriately aver
aged over the Fermi sphere of initial electron velocities. This cross section d2aR 
is obtained from (4.1) when £= 1. The resultant expression for d2aK is some
what complicated, but it can be compactly written in terms of several character
istic energies associated with the excitation event. These are

£,, = jflîc2 = £j + £F , (4.11 a)

ep=l2md (4.11b)
rn

er = ep+se-2rjyeeepy/2 = -(v-v1)2 (4.11c)

and
£0 =£p+£r-2(£p£r)1/2 (c-T-rJ)2. (4.1 Id) 
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Here, £p is the kinetic energy of an excited electron and Ep the energy of an 
electron at the projectile velocity, Er is the excited electron energy in a system 
moving with the projectile velocity, and £0 is the minimum energy an electron 
can have in order to be excited to the velocity . The expression which results 
for d2oR is then

d2oR = 37r^2/(£g2)1/2^3/£2e,£p,£o,-y71-^e^1 (4.12)
4(£pCr)

where 

g3 = &( 1 -rj2} [(£e-£f) 2-(£e-£0) 2] — [1 — (£e/fip)1/2] [(ee — £7-) 1

It can be shown that in the limit as ef —> 0 

d2oR —> da^ô^-vjïv) , (4.14)

where doR is the expression given in (3.21) with = 1, and where proper account 
is taken in the limiting process of the fact that the cross hatched areas in Fig. 10 
limit to straight lines as ef —> 0. The cross section (4.12) can also be obtained by 
appropriately averaging the classical binary-encounter cross section (Ref. 13, 
eqn. 15) over a Fermi distribution of initial electron velocities.

The results in section 3 suggest that (4.12) should be an accurate description 
of d2o for sufficiently large excitation energy, and comparison with numerically 
evaluated spectra bears this out. Figures 13a-c show such comparisons for d2o 
as a function of electron velocity, , at = rjc as defined by (4.6). The projectile 
velocity, v, was selected for these calculations such that the values of rjc are 0.25, 
0.5, and 0.75, for plots a) through c), respectively. These spectra correspond to 
Fig. 6 for the integrated cross section, do.

One notes that the width of the resonance is relatively independent of the 
location of the critical angle, and thus that the shape of the resonance is essentially 
independent of the projectile velocity, as long as v is greater than the critical 
velocity, <7C (Eqn. (3.9)). This property is further illuminated by the angular 
distributions one obtains at the critical excitation energy, £lc, Eqn. (3.25), as 
shown in Figs. 14a-c, respectively. There it is seen that the angular width of 
the singularity is almost independent of the projectile velocity. Fig. 15 shows the 
combined energy and angular dependence of the cross section in the (c\, //J plane. 
It is nonzero in the cross hatched area defined by Fig. 10, above which is plotted 
d2o/d2oR, for x2 = 0.1. The singularity is indicated by the arrow at (xc,r]c).
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Fig. 13. Normalized double 
differential excitation cross sec
tions, d2ff/d2oR, vsvjvp for in
cident projectile velocities such 
that rjc = a) 0.25, b) 0.5, and 
c) 0.75.
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Fig. 14. Normalized double differential 
excitation cross sections, vsrj1 at the critical 
excitation energy. Incident projectile velo

cities are such that r/c = 0.25, 0.5, 0.75, and 
1.0. a) / = 0.01, b) z2 = 0.1, c) / = 1.0.

Fig. 15. Three dimen
sional plot of 
d2a/d2aR showing 
both the and rjï 
dependence of the 
normalized cross 
section.
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From Figs. 13, 14, and 15 it appears that qualitatively we may describe the 
relative cross section d2<T/d2aR as the sum of two parts. One part increases slowly 
with excitation energy, 6] , from zero at the Fermi surface to a value approxi
mately equal to 1 for energies greater than elc. The other contribution comes 
from the resonance whose location in the spectrum is determined by Eqns. (3.25) 
and (4.6), and the shape of which is essentially independent of projectile velocity. 
This qualitative description also indicates that relatively accurate cross sections 
can be extracted from Figs. 13 and 14, even for velocities below the critical 
velocity, by simply translating the angular distributions in 77, so that the singu
larity falls at the location determined by (4.6). It should be noted that for v< vc, 
(4.6) yields values of r]c>\, so that the angular distributions are truncated in 
this case at a value of which is dependent on v.

5. Summary and Discussion
Single-particle excited-electron spectra have been calculated for heavy atomic 
projectiles penetrating a free-electron gas. The interactions among the electrons 
of the gas have been included through the dielectric function of Lindhard. The 
calculations have been carried out for a broad range of electron densities.

For low incident projectile velocities it proves possible to derive analytical 
approximations to both single and double differential spectra analogous to Lind- 
hard’s low-velocity approximation to the stopping power. The analytical expres
sions are reasonably accurate for incident velocities not too close to the Fermi 
velocity of the target electrons. Further, the analytical formulae form a con
venient base for the normalization of numerical results, and simplify the process 
of interpolation between the results presented here.

The low-velocity spectra exhibit characteristic scaling properties expressed 
by Eqs. (3.19) and (4.10) for the single and double differential cross section, 
respectively. Apart from normalization, both spectra depend on the excitation 
energy through the variable

r = eJ^mVpV) , (5.1)

and the cross section at =0 is proportional to the reciprocal projectile velocity. 
These relationships are well corroborated experimentally in low-velocity ion
atom collisions.14 A more quantitative check on the details of the predicted spectra 
hinges on a proper averaging procedure over the electron density distribution of 
the collision partners according to the Thomas-Fermi principle, and is outside 
the scope of the present paper.
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In the limit of very high projectile velocity, the electron spectra follow the 
laws of classical Coulomb scattering—due account being taken for the initial 
Fermi distribution of electron velocities—except for excitation energies of the 
order of the Fermi energy and below, where the behavior is influenced by the 
mutual interaction between the electrons. A characteristic feature is the occurrence 
of a resonance at a fixed excitation energy at ~ 1-4 times the Fermi energy, 
dependent only on the density of the electron gas. Inspection of the double differ
ential electron spectra shows that this resonance occurs at an ejection angle 0c 
given by Eq. (4.7),

COS0c=Mc-y, (5.2)

the parameter we(~1.5) being determined by Fig. 7 as a function of electron 
density. It has been shown recently 15 that Eq. (5.2) can be interpreted as a 
preferential electron ejection in the direction of the Mach angle of the polariza
tion wake11,16,17 excited by the penetrating particle. The width of the resonance 
in energy and direction depends on the electron density, and turns out to be 
roughly proportional with the excitation energy at which the resonance occurs. 
In atomic systems, the resonance is expected to be broadened due to the finite 
volume of the atomic electron gas. Resonances of this type do not seem to have 
been identified experimentally so far.

With regard to predicted spectra for the case of the free Fermi gas, the limiting 
energies and angles of ejection are given by Fig. 10 as a function of electron 
velocity, and Figs. 5 and 6 determine the deviations of single differential spectra 
from straight Coulomb scattering. Similarly, Figs. 13a-c and 14a-c determine 
the corresponding deviation of the double differential cross section in energy and 
angular variables, respectively. Numerical tabulations are available.18 The latter 
may become useful in particular for intermediate projectile velocities.
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Synopsis
Straggling in energy loss for 40-keV to 1-MeV hydrogen ions and 100-keV to 2.4-MeV helium ions 
in a variety of atomic and molecular gases has been measured with an accuracy of 5-7 %. When 
straggling data for hydrogen and helium penetrating the same monatomic gas are compared, signi
ficant deviations from the Zf scaling contained in the Bohr expression fç>r energy straggling Qj are 
observed. These deviations are explained by an atomic correlation term stemming from the bunching 
of electrons into atoms and by an additional straggling term Of. resulting from charge-state fluctua
tions. It is shown that the importance of charge-exchange straggling has been substantially over
estimated in the past. For hydrogen ions penetrating heavy monatomic gases, the straggling increases 
with increasing energy and approaches the high-energy Bohr limit, in agreement with theory. The 
qualitative agreement between these hydrogen results and the electron-gas calculations by Bonderup 
and Hvelplund and by Chu is, however, markedly improved by inclusion of the atomic correlation 
term. For hydrogen and helium targets, an excess over the Bohr value, caused by finite values of the 
electron velocities compared to that for the projectile, is observed at velocities, where the electronic 
stopping power has its maximum. For molecular gases, a further increase in straggling is seen, caused 
by bunching of atoms into molecules, which leads to a further increase in the fluctuations of the 
number of collisions with electrons.
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§ 1. Introduction
When an initially monoenergetic ion beam penetrates matter, the average energy 
loss is accompanied by a spreading of the energy of the ion beam due to the 
statistical nature of the collision processes. A measure of this energy broadening 
is given by the mean-square deviation Q2 of the resulting energy-loss distribution, 
also known as the energy straggling.

While the average energy loss per path length, the so-called stopping power, 
of energetic hydrogen and helium ions has been extensively studied and can be 
predicted to within 3—10% for all elements from recent tabulations (Andersen 
and Ziegler (1977) and Ziegler (1978)), the straggling in energy loss has received 
much less attention, probably because straggling measurements involve more 
experimental complications than do stopping-power measurements, and most 
of the published experimental straggling results are thus rather uncertain. How
ever, as Rutherford-backscattering and nuclear-reaction analysis have become 
important microanalytical techniques for discerning atomic mass, resolving depth, 
and perceiving crystalline structure of the near-surface region of materials, 
precise data on energy straggling are desirable since electronic energy-loss 
straggling is indeed one of the main features limiting the depth resolution of both 
these ion-beam-analysis teckniques.

The fact that the majority of experimental straggling results have been 
obtained using solid targets has obscured our understanding and description of 
the straggling processes since specific solid-state effects stemming from target 
inhomogeneities such as nonuniform film thickness, porosity, surface contamina
tion, and crystal structure can obscure the measured straggling in an uncontrol- 
able way. Measurements with gaseous targets provide a much better basis for 
quantitative comparison between theory and experiment, and we have there
fore performed an accurate, systematic investigation of the straggling in energy 
loss for hydrogen and helium ions on a variety of atomic and molecular gases 
(H2, He, N2, O2, CO2, Ne, Ar, Kr, and Xe) at ion energies of 40 keV £ EH £ 1 MeV 
and 100 keV £ EHe £2.4 MeV.

The present paper belongs to a series of three, which describes the results of 
an experimental study of the penetration of swift hydrogen and helium ions 
through gases [Besenbacher (1977)]. The stopping-power results and a detailed 
discussion of the experimental setup was presented in the first paper [Besenbacher 
et al. (1979)], hereinafter referred to as I. In the second paper [Besenbacher et al. 
(1980)], referred to as II, a comprehensive discussion of the theoretical descrip
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tion of straggling in energy loss of energetic hydrogen and helium ions was 
presented. The present paper deals mainly with a presentation of the experimental 
straggling results, some of which have been published in a recent letter [Besen- 
bacher et al. (1977)] and in II.

Following a review of the theory of electronic energy straggling for light, 
swift ions in § 2, we shall give a brief description of the experimental procedure 
and data treatment in § 3 together with a discussion of how the measured straggling 
results are influenced by the small contribution from nuclear collisions. Finally, 
in §4, the experimental results are presented and discussed in connection with 
a comparison with theory.

§ 2. Theory
A general description of the statistical nature of the energy-loss processes in 
targets with randomly distributed atoms has been given by Bohr (1948). For a 
monoenergetic beam suffering, an energy loss, which is small compared to the 
initial energy (the thin-absorber approximation), Bohr divided up the collisions 
of the projectile into various types of processes i, each one corresponding to a 
small interval of energy transfer (T.,Tj+dTJ. If n, denotes the fluctuating 
number of processes of type i, the average energy loss and the average square 
fluctuation in energy loss is given by

= NARfdCT(T) =NARS (1)
i

and

Q2 = (AE-ÂË)2 = = SïqT2 = NARfdcr(T) T2 (2)
1

Here, NAR is the target density, d<7 is the cross section for an energy transfer T, 
and S is the stopping cross section. The two important assumptions underlying 
Eqs. (1) and (2) are that processes of different type are statistically independent 
and that the number of processes of a given type follows Poisson statistics.

As argued by Bohr (1948) and Vavilov (1957), the energy-loss distribution is 
expected to be a Gaussian provided all the individual contributions to the energy 
loss are small compared to Q, i.e., Q ^3Tmax, where Tmax is the maximum 
energy transfer in a single collision with a free electron. This inequality, together 
with the requirement that AE << E, leads to the following condition on the target 
density,

E/S> NAR[atoms/cm2] S 2 x IO20 (Tffg^)*, (3) 
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where Z , M1? and E denote the atomic number, mass, and energy of the pro
jectile and Z2 the atomic number of the target atoms. This requirement defines 
a broad, experimentally accessible and interesting region, in which comparison 
between experimental data and theoretical results is most easily performed since 
the resulting Gaussian energy-loss distribution is characterized by AE and Q 
only. The general case, for which the inequalities in Eq. (3) are not necessarily 
fulfilled, has been treated by Bohr (1948) and, in particular, by Williams (1929), 
Landau (1944), Vavilov (1957), and Tschalär (1968). In the limit of very thin 
(Q << Tmax) and very thick (AE ~ E) absorbers, highly asymmetric energy-loss 
distributions are obtained.

For the light, swift ions considered in this experiment, the slowing-down is 
mainly caused by collisions with electrons. Assuming as a first approximation 
that all the target electrons contribute to the straggling as free electrons initially 
at rest, we may insert in Eq. (2) as the differential cross section the Thomson 
formula for the scattering of a projectile with velocity v by a free electron,

, 27tZ12e4 dT
da = _ mv2 T5’’ W

where — e and m denote the charge and mass of the electron. As opposed to the 
calculation of the average energy loss, the Rutherford cross section may provide 
a reasonable approximation to be used in the calculation of edergy straggling 
since this quantity is dominated by the more violent collisions, for which atomic 
binding and screening are less important. By inserting Eq. (4) into Eq. (2), we 
obtain Bohr’s remarkably simple nonrelativistic high-energy limit,

Q2=Q| = 47tZ12e4Z2NAR . (5)

(6)

'■> — ^2 ’

So far, the orbital velocities ve of the electrons have been completely neglected 
as compared to the projectile velocity v. For small but finite values of ve/v, a 
correction term to the simple Bohr formula appears, and in the quantal-perturba- 
tion limit v>>2Z1v0, where v0 = e2/h, the following formula is obtained [Fano 
(1963)],

02 4"S(1) 9 2
Z„ ' 7 2mv2

n? = H-------- l°g “T— •L2g mv2 °

Here, the average excitation energy Ix is given in terms of the atomic dipole 
oscillator strengths f01 and the corresponding transition frequencies <w01 by

Çf0ihco01loghco01 
1OgI1 Sfoiloghcooi

i 

(7)
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while the parameter S(l) defined as the zero moment over the dipole oscillator
strength distribution according to Fano (1963) can be written as

S(i) = Sha)(Mf01 = ^<jSv1|2>„,
1  1 1

(8)

where vd is the velocity of the i’th atomic electron and < >0 denotes the ground
state expectation value. The validity of Eq. (8) is discussed in some detail in 
Sec. 4.3.

As the velocity of the projectile decreases, the velocity of the inner electrons 
may even exceed the projectile velocity, especially for heavy substances. Accord
ing to Bohr (1948), an approximate way of accounting for the straggling in this 
situation is to neglect the contribution to the straggling from the inner electrons 
and replace the total electron density NZ2 in Eq. (5) by the density of elec
trons with velocities lower than v. For this density, Bohr inserted the value 
N(ve < v) NZg/3(2v/v0), and at lov velocities, this implies a significant reduc
tion in the straggling compared to the Bohr value.

Bohr’s treatment was improved by Lindhard and Scharff (1953). They treated 
the target as a collection of free electron gases, and the straggling pertaining to 
an atom was obtained as an average over the electron cloud of the straggling 
Q2(g,v) for a gas of constant density q (see Eq. (7) in II). In order to calculate 
Q2(g,v), the electron cloud of the target atom is divided into an outer and an 
inner region, where the outer electrons are roughly those corresponding to a 
local Fermi velocity lower than v. Assuming that the contributions from the 
outer and inner electrons are given by the asymptotic expressions for an electron 
gas and using the Bohr model for the atomic density g(r), Lindhard and Scharff 
(1953) arrived at the following formula,

L(x)
2 for x £ 3

1 for x 3
(9)

Here, x is a reduced energy variable, x = (v/v0)2/Z2, and L(x) is defined in terms 
of the electronic stopping cross section through the relation

Se N\ dR/
47tZ12e4

mv2 Z2L(x) . (10)

Bonderup and Hvelplund (1971) have refined the Lindhard-Scharff model 
by using a more accurate expression for the straggling contributions from the 
various parts of the electron cloud and the more realistic Lenz-Jensen model for 
the atomic-electron density. Similar calculations with Hartree-Fock-Slater elec-
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tron densities have been performed by Chu (1976). These calculations were based 
on the following expression for Q2(ß,v), (Bonderup and Hvelplund (1971)).

(Ha)

(Hb)

where vF (ß) is the local Thomas-Fermi velocity, co0(g) is the local plasma fre
quency, and X2 = v0/ævf is a dimensionsless quantity proportional to the third 
root of the density. The term with the plasma frequency stems from resonance 
collisions due to collective excitations, but the main contribution in the limit 
v £ vF comes from single-particle collisions.

However, as pointed out by Bonderup and Hvelplund (1971) and discussed 
in greater detail in II, it is important to realize that, within the Lindhard-Scharff 
(LS) model, the projectile-electron excitations are assumed to lead to the same 
basic, statistically independent excitations in the atom as in the electron gases 
by means of which the electron cloud is described. In a real atomic gas target, the 
electrons are bunched into atoms, leaving part of the space empty. This spatial 
correlation of the atomic electrons leads to stronger fluctuations in the number 
of collisions with electrons and thus to an increase in energy straggling. A similar 
type of correlation results when the target is a dilute gas of diatomic molecules. 
In this case, the electrons are not only bunched into atoms, but the atoms are 
also bunched together into molecules, leading to a further increase of the fluctua
tion in the number of collisions with electrons. These molecular correlation effects 
have been discussed extensively by Sigmund (1976, 1978) from a somewhat 
different point of view. Another type of correlation effect may stem from charge
state fluctuations in a gas target, when the charge of the ion fluctuates in such a 
manner that a given charge state persists during several ion-atom collisions. 
Since the energy loss depends on the charge state, the losses in successive collisions 
with atoms become correlated, and an additional straggling contribution re
sults. Spatial and charge-state correlations were discussed in detail in II, and 
only the main results will be stated here.

As shown in II, the straggling for a light, swift ion colliding with an atom, 
which contains many electrons, can, if charge-state fluctuations are neglected, be 
written as

q2=ql2s+q2

with the atomic correlation term given by

Q2 =NARfd2p[£(p)j2.

(12)

(13)
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Here, e(p) is the average energy loss to an atom at fixed impact parameter with 
respect to the nucleus. In II, it was found convenient to introduce an atomic 
area,

2 _ [fd>£Çp)]2

such that Eq. (14) can be written as
Q2 =NAR-^2 .

71 r A

(14)

(15)

Equation (12) reduces to the Lindhard-ScharfF expression in the high-velocity 
limit, where the probability for electron excitation is small. In the opposite 
extreme to the LS limit, i.e., at sufficiently low projectile velocities, the penetra
tion of the atom leads to the excitation of several electrons. For a fixed impact 
parameter, the fluctuation in energy loss may then be neglected, and the entire 
straggling derives from the statistical distribution of impact parameters, i.e., is 
given by Eq. (13).

For heavy ions at low velocities, v < v0Z2/3 (vQ is the Bohr velocity), Firsov 
(1959) has calculated e(p) within a Thomas-Fermi treatment. Inserting the 
Firsov result eF(p)in Eq. (13), we get the entire straggling for heavy ions in this 
low-velocity limit (Hvelplund (1971) and II).

NAr =| £p (p) 27tpdp = (Z2 + Z2)8/3^-^ 8 x 10 15eV2cm2/atom . (16)

For hydrogen and helium ions, on the other hand, a detailed knowledge of 
sip) is still lacking, and this complicates a calculation of the atomic area trr2, 
and thereby of the atomic correlation term Q2 . However, as discussed in some 
detail in II, simple estimates based on the Lindhard-Schàrff model [Lindhard and 
Scharff (1953), Lindhard and Winther (1964), and Bonderup (1967)], for energy 
loss show (i) that zrr| depends only weakly on Z2, (ii) that for energies around the 
stopping-power maximum where Q2 has its maximum value, 7tr^ is ~ 8-1 Orca2 
(a0 is the Bohr radius) and (iii) that the energy dependence of 7tr^ is probably 
rather weak. In II it was therefore tentatively suggested that the simple formula 
(15) with an atomic area lOzra2 may account for the increase in straggling
for an atomic-gas target due to the bunching of the electrons. This suggestion is 
supported at least for protons and a particles by comparison with the comprehen
sive set of straggling results presented here, a fact that will be discussed in detail 
in §4.1.

If, instead, the projectile penetrates a target of homonuclear diatomic mole
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cules with internuclear distance d, the total straggling is obtained by adding to 
Eq. (12) a further correlation term , which results from the bunching of the 
atoms into molecules. For the simple case, where the molecular axis is aligned 
with respect to the beam axis, the molecular term equals . A misalignment 
reduces the molecular term, and a simple geometrical argument presented in II 
as well as a more refined calculation [Sigmund (1976)] yields the following 
molecular correlation term,

NARjid3’ d > rA (17a)

Q'=NARS7’ d <rA (17b)

Concerning the straggling contribution stemming from charge-state fluctua
tions, the discussion will be restricted to target thicknesses, for which several 
charge-changing collisions occur, and to cases where only two charge states qj 
and q2 are important. This is the situation for helium ions at the energies and 
target thicknesses used in the present work. If Sx and S2 denote the stopping cross 
section for the projectile in the two charge states and a is the fractional time 
spent in charge state 1, the average-square fluctuation in AE due to fluctuations 
in a is given by

Q2C = (NAR)2(S1-Sa)2(ö2-ä2) . (18)

fhe average-square fluctuations in a is determined by the capture and loss cross 
sections (712 and c21, and a calculation presented in II yields

Q? = NAR (S,- V ;-g2X21V ■ <19>
12 ' 21.1

This result is similar to that stated by Vollmer (1974) and by Efken et al. (1975).

§ 3. Experimental procedure and data treatment
In the present work, an extensive investigation of energy loss and straggling in 
energy loss for hydrogen ions of 40-keV to 1-MeV energy and helium ions of 
100-keV to 2.4-MeV energy penetrating thin layers of various gases (H2, He, N2, 
CO2, O2, Ne, Ar, Kr, Xe) has been carried out.

Since details of the experimental procedure and data treatment were pre
sented in I, only a brief description will be given here.
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A magnetically analyzed hydrogen or helium beam passes through a differ
entially pumped, 504-mm long gas cell via 0.2-mm diameter apertures. For 
energies below 300 keV, measurements were performed at a 400-kV Van de Graaf 
accelerator and a 100-kV electromagnetic isotope separator. The energy-degraded 
beam was energy-analyzed by means of an electrostatic analyzer and detected

Fig. 1 : Experimental setup used at the 400-kV Van de Graaff accelerator and at the 100-kV isotope
separator.

Fig. 2: Experimental setup used at the 2-MV Van de Graaff accelerator.
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by a standard Si surface-barrier detector, as shown in Fig. 1. The energy-loss 
distributions were measured by sweeping the beam across the exit aperture D by 
means of the electrostatic analyzer. In this way, the beam intensity is averaged 
in time, and no beam normalization is needed. For energies above 200 keV, 
measurements were performed at a 2-MV Van de Graaff accelerator, and the 
beam transmitted through the gas cell was momentum-analyzed, using a double
focussing sector magnet, and detected by a solid-state detector (Fig. 2). Detector 
N counted neutrals and was used for normalization. Thus fluctuations in the 
beam current did not influence the measurements. The use of energy-dispersive 
detectors allowed elimination of beam contamination and slit-edge-scattered 
particles. The pressure in the gas cell was measured with a membrane manometer, 
and the pressure was kept stable within less than 1 % via a motor-driven, servo
controlled needle valve. The purity of all gases used was better than 99.5 %.

In all cases except for hydrogen ions penetrating H2 at energies above 200 keV, 
the gas-cell pressure (0.1 PG 2 torr) was chosen to satisfy the inequalities (3), 
which give Gaussian energy-loss distributions. This was confirmed experimentally 
by plotting the distribution on graph paper with a cumulative Gaussian scale, 
as shown by the example given in Fig. 3.

Fig. 3: Energy distribution of an 
incident 60-keV H+ beam after it 
emerges trom a 1.51 xlO17 mole- 
cules/cm2 CO2 layer. The main 
part of the distribution is plotted on 
probability paper, from which it is 
concluded that the energy-loss dis
tribution is Gaussian.

From the measured energy-loss or momentum distribution, the average energy 
loss and the standard deviation are easily obtained as
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and

(20)

(21)

where Ej is the incident energy and Ex and E2 are the energies corresponding to 
the half-maximum positions for either the momentum or the energy-loss distribu
tion. The energy spectra obtained with no target gas were also approximately 
Gaussian with a mean-square deviation Qi, corresponding to an energy resolu
tion (FWHM/Ej) of 0.74% and 0.10% for the electrostatic and the magnetic 
analyzers, respectively. Consequently, the straggling can be obtained from the 
formula

Q2=Qe —Qj . (22)

In all the cases reported here, Qf is small compared to QE. The target density 
NAR in molecules/cm2 is calculated from Eqs. (15) and (16) in I, and the 
straggling parameter Q2/NAR is assigned to the mean energy Eav = Ej — AE/2.

For asymmetric energy distributions, which were found only for hydrogen 
penetrating H2 at energies E 200 keV, the moments Mj = AE and M2 = Q2 
were found by numerical integration of the energy-loss distribution W(AE) 
according to

AEW(AE)d(AE)
M, = --------------------- (23)

W(AE)d(AE)
Jo

(AE-AE)2W(AE)d(AE)
M2 = -x- ■ ■ ----------------------- (24)

W(AE)d(AE)
Jo

To verify that the straggling Q2 is proportional to the target density NAR, 
Q2 was plotted versus NAR for different energies and gases, and a typical example 
is shown in Fig. 4.

In the present energy region, it is not possible to correct in a simple way the 
measured straggling data for contributions from nuclear collisions as is the case 
for stopping-cross-section data. Ehe reason is that compared to average energy
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Fig. 4: The energy straggling Q2 versus target 
density for He in N2.

4 8 12
NAR 1Ö' (molecules/cm2 )

16

loss, straggling depends more strongly on close collisions, and hence the separation 
of the elastic and inelastic collisions becomes more ambiguous. In order to 
estimate the contribution from nuclear collisions to the measured straggling, we 
shall consider the following example, which represent one of the cases with the 
largest contribution from nuclear collisions,

113.4 keV He—* He
Qe = 0.792 keV
Tmax,e = 0.062 keV

N A R = 1.24-1018 atoms/cm2
Qn = 1.137 keV
Tmax.n = 113.4 keV

Here, indices e and n refer to electronic and nuclear collisions, respectively, and 
Qn is calculated from Bohr’s nuclear-straggling formula (Bohr (1948)), which is 
analogous to formula (5). The spectrum originating from the electronic collisions 
will be a Gaussian distribution, while the nuclear collisions give rise to a strongly 
asymmetric distribution with a low-energy tail. However, particles which have 
experienced the most violent nuclear collisions are scattered out of the angularly 
narrow, forward-directed, analyzed beam, thus reducing the “nuclear tail” con
siderably. According to Hvelplund (1971), the particles accepted by the analyzer 
will approximately be those which have suffered collisions with an energy transfer 

T Tn* where T* is the nuclear-energy transfer, corresponding to a deflection 
angle (p* that divides the angular distribution into a Gaussian peak and a tail. 
In Fig. 5, Tn* and the corresponding impact parameter pmln are shown for the 
case considered here. If the measured straggling is given by
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Fig. 5: Energy transfer in a single collision as 
a function of impact parameter. Inelastic 
transfer is calculated from Firsov’s (1959) 
Te (p). The elastic energy transfer is calculated 
from a power potential V (r) oc r-2 (Lindhard 
et al. (1968)). Tn* and pmin refer to maximum 
elastic energy transfer and the corresponding 
impact parameter for atoms still belonging to 
the forward-directed beam, cf. text. The TF 
screening radius is given by 
a = 0.8853 a0(Z12/3 + Z22/3)"1/2.

then for the actual case fiexp > Te (pmin) + Tn*, and hence the energy distribution 
for the forward-directed beam should be Gaussian, in agreement with the experi
mental findings. From Fig. 6 it is found that the contribution from the nuclear 
collisions (area I ) to the measured straggling Qexp is roughly 2 %, whereas the 
excluded straggling term from electronic collisions with p < pmln (area I ) is 
approximately 4 %.

It can thus be concluded that the measured straggling can be attributed 
mainly to electronic collisions, and no corrections for nuclear straggling have 
been applied.

Based on the systematic and statistical experimental errors quoted in I and 
an assumed 10% uncertainty in Q2 (stemming from the assumption that the 
primary energy distribution is Gaussian and from the actual value of Qf), we 
estimate the total uncertainty in the measured straggling Q2/N AR to be 5—7 %.

Fig. 6: The energy transfer squared 
times the reduced impact parameter 
for the specific case considered in 
Fig. 5, plotted versus the reduced 
impact parameter. According to >
formula (25), the contribution to i
the straggling from nuclear t

collisions is given by the area I2 
and the straggling term stemming 7-
from small impact parameters, which 
we exclude in the present experimental 
setup, is given by the area I . Concer
ning Te, Tn , and pmln , see Fig. 5.
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§ 4. Experimental results and comparison with theory
4.1 Deviations from Zj Scaling for H and He Ions in Monatomic Gases
Since the contributions to the Lindhard-Scharff straggling term in Eq. (13) 
mainly stems from close collisions with electrons, Q^s h proportional to Zx2 even 
in an energy region where the electronic stopping power may deviate from the 
Z2 perturbation scaling. The corrections to Qls> however, show a different de
pendence on Z since they are proportional to S2 and thus to ~Z® —Z^. It is 
therefore possible to obtain a semi-emperical determination of the atomic-corre
lation term Q 2 due to bunching of electrons into atoms by comparing experimental 
hydrogen- and helium-straggling results for the same monatomic gas. As argued 
for in II, such a semiempirical procedure is preferable because of the problems 
involved in performing a stringent theoretical calculation ofQ2 .

Fig. 7 : Experimental energy-straggling data for H
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Fig. 8: Experimental energy-straggling data for He ions in Ne, Ar, Kr, and Xe.
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The experimental straggling parameters Q2/NAR for hydrogen and helium 
ions penetrating Ne, Ar, and Xe are plotted in Figs. 7 and 8 as a function of the 
mean energy Eav . While the hydrogen data increase monatomically and approach 
the Bohr value for increasing energy, as expected from theory, the helium data 
show a local maximum at EHe ~ 1 MeV. Tn Fig. 9, the hydrogen and helium 
results Q2/Q2 are plotted versus energy per nucleon for Ne, Ar, Kr, and Xe, 
while similar results for a helium target are shown in Fig. 15. A significant devia
tion of the Q2 values from the Z2 scaling contained in the Bohr straggling formula 

(Eq. (5)) is revealed. The difference between the averaged helium and 
hydrogen results in Figs. 9 and 15, which is plotted as points in Figs. 10 and 16, 
can, as argued above, be attributed to corrections to the Lindhard-Scharff term, 
i.e., to straggling terms resulting from the bunching of electrons into atoms and 
from charge-state fluctuations.

The contribution from charge-state fluctuations for helium ions can be ob
tained from Eq. (20) and is shown in Figs. 10 and 16 as the lower solid line. For
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Fig. 9: Energy straggling 
for H and He ions in Ne, 
Ar, Kr, and Xe versus 
energy per nucleon. The 
solid lines through the 
experimental results are 
drawn only to guide the eye.

Fig. 9 continued on p. 20.
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Fig. 9 (continued from p. 19).

the capture and loss cross sections in Eq. (20), the experimental values for Kr, 
Ar, and He of Pivovar et al. (1962a, 1962b) and of Hvelplund et al. (1976, 1980) 
are used while no data are available for Ne and Xe. A simple estimate of the 
partial stopping cross section Se(He+), i.e., the stopping cross section of a helium 
ion in the fixed charge state He+ (Cuevas et al. (1964)) can be obtained from our 
measured helium-stopping cross sections (I) through the equation

S(He) = F^SJHe+J + F2.S2(He++), (26)

for EHe 400 keV, for which the neutral component is negligible. Here, the 
equilibrium charge-state fractions are given by F = <?21 (<?12 4- a21)_1 an<^ 
F2œ = f12(Ci2 + cr21)_1, while the partial a-stopping cross section S2(He++) can 
be set equal to four times the measured proton-stopping cross section Sp (I). The 
uncertainty in the derived straggling contribution Q2/Q| is ~ 15—25 %, stemming 
from uncertainties in the applied experimental quantities. For the heavy mon- 

M
atomic gases, it is seen in Fig. 10 that k negligible for Ejç^ 300 keV and 
that Qc/Qb cannot alone account for the experimental helium-hydrogen dif
ference.

In previous investigations of the influence of charge-exchange straggling 
[Besenbacher et al. (1977) Bednyakov et al. (1977), Efken et al. (1975), Sofield 
et al. (1978), Crowern et al. (1979), Schmidt-Böcking and Hornung (1978), Voll
mer (1974)], it has been assumed that the partial stopping cross section of an ion in 
a fixed charge state q can be written as Sq = q2Sp, which for the factor in Eq. (19) 
yields (Sj—S2)2 = (qf —qf)2Sp. For helium ions, this means that Si(He+) = Sp , 
which is appropriate for distant collisions only, and consequently, S1(He+) is 
underestimated. The assumption thus leads to values offic/^B> presented by 
the upper full-drawn curves in Figs. 10 and 16, which overestimate the influence 
of charge-state fluctuations considerably.
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Fig. 10: The deviation 
"rom the Z2 scaling of 
energy straggling for H and 
He ions in Ar, Kr, Ne, and 
Ke versus energy per 
nucleon. The points display 
the difference between the 
experimental He and H 
results from Fig. 9. The 
contribution from charge
state fluctuations (Eqs. 
(19) and (26) for He ions, 
measured in units of

(He), is given by the 
lower, solid curve, whereas 
the upper solid curve shows 
the incorrect value ofQc 
calculated previously under 
the assumption that the 
stopping cross section for 
He+ is equal to that for 
protons. The difference 
between the atomic-correla
tion terms in units ofQg for 
He and H ions is represented 
by the dot-and-dash curve 
For an atomic area of 10?tao2. 
When the contribution from 
charge-state fluctuations is 
added, the dashed curve 
results.

450 550
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The difference between the atomic correlation terms Q2/Q2 for helium and 
hydrogen ions is shown as the dot-and-dash curve in Figs. 10 and 16. ForQ| we 
have used Eq. (15) with the experimental-stopping cross section (I) and an 
atomic area ftr2 of 10^a2. Adding to this curve the contribution from charge
state fluctuations, we obtain the dashed curve, which is seen to be in overall good 
agreement with the experimental data. This fact lends strong support to the 
theoretically predicted expression for the atomic correlation term (Eq. (15) with 
an atomic area zrr2 ~ lOzra2, approximately independent of energy and Z .

For a xenon target, the helium-hydrogen difference is nearly completely 
described by Q2X j for the medium elements such as Kr, Ar, and Ne, the relative 
importance ofQ£ increases with decreasing atomic number, and for helium, the 
difference can on the whole be accounted for by Q |. The experimental results 
thus support the expectation that the relative importance of the atomic bunching 
term Q2 decreases with decreasing number of target electrons since from Eqs. 
(15) and (5), we have that is roughly proportional to Z2.

While the helium-hydrogen difference in Fig. 10 approaches zero at high 
energies, negative values are obtained at low energies (see, e.g., the argon and 
krypton data in Figs. 9 and 10). This at first somewhat surprising result is explained 
by the energy dependence of the stopping, cross sections and thereby of the atomic 

correlation term Eq. (15). For energies E~ 50-100 keV, SH and conse

quently Q2 for hydrogen ions reach their maximum values and are approximately 
constant while SHe and hence Q2 for helium ions decrease with energy as E1/2 and 
E, respectively, and at 50 keV, (Q2/Qß)H is in fact larger than (ßl/Q|)He • This 
explains the steep slope of the dot-and-dash curves in Fig. 10 at the low energies. 
In Fig. 11, the straggling data for helium and hydrogen ions in Ar have been 
corrected for the influence of the atomic-straggling term Q2 due to the bunching

Fig. 11 : The experimental-straggl
ing results from Fig. 9 for H and 
He ions in Ar corrected for the in
fluence of the atomic-straggling 
term Q2 given byg Eq. (15) with 
an atomic area of lOrca^. The cor
rected He (dashed curve) and H 
(dot-and dash curve) results are 
compared with the electron-gas cal
culations by Bonderup and Hvelp- 
lund (1971) (Qb2h). 



40:9 23

of the electrons into atoms. These corrected helium (dashed curve) and hydrogen 
(dot-and-dash curve) results agree mutually and with the Bonderup and Hvelp- 
lund results (solid curve) both at low and at high energies. The increase of the 

Mhelium results over the hydrogen results at Ey-p ~ 50—100 keV is due to the in

fluence of charge-state fluctuations. Similar curves can be obtained for the 
other rare gases.

We may complete this section by concluding that the importance of charge
exchange straggling has been overestimated substantially in the past, and that 
the deviation from the Z2 scaling of Q2, resulting in a significant difference between 
the helium- and hydrogen-straggling results may be accounted for by the atomic 
bunching term given by Eq. (15) with an empirically determined area of lOfta^ 
and the charge-exchange straggling expression given by Eqs. (19) and (26).

4.2 Straggling for Hydrogen Ions in the Monatomic Heavy Gases
In Fig. 12, the experimental straggling results for hydrogen in Ne, Ar, Kr, and 
Xe are compared with the electron-gas calculations QB2H by Bonderup and Hvelp- 
lund (1971) shown by the dashed curves. The experimental results are in quali
tative agreement with the theoretically predicted reduction in straggling com
pared to the Bohr value for decreasing velocities, but the quantitative agreement

Fig. 12: Energy straggling for 
protons in Ne, Ar, Kr, and Xe 
versus the reduced- energy 
parameter x, normalized to the 
asymptotic Bohr value (Eq. (5)). 
The experimental data (•) 
from Fig. 7 and (A) from 
Bonderup and Hvelplund ( 1971 ) 
are compared with the theoretical 
results. Dashed curves: theoretical 
values by Bonderup and 
Hvelplund (1971); solid curves: 
the sum of the BH results and 
the atomic correlation term, 
Eq. (15) for an atomic area of 
lOzra^; double dot-and-dash 
curve : theoretical values of Chu 
(1976) ; dot-and-dash curve: 
equivalent to the solid curve 
except that the BH results 
are modified, as explained in text. 
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is rather bad. For the heavier atoms, the discrepancy increases for decreasing x. 
Adding, however, the atomic correlation term Q2 given by Eq. (15) with an 
atomic area of 107ta02 to OBH , the solid curves in Fig. 11 are obtained, and it is 
seen that Q2 on the whole accounts for the discrepancy between 0BH and the 
experimental results for Ar, Kr, and Xe, while the agreement in the case of Ne 
is still relatively poor. However, for the lighter rare gases such as Ne and He, 
the more realistic Hartree-Fock-Slater electron densities applied by Chu (1976) 
are superior to the Lenz-Jensen densities underlying the Bonderup-Hvelplund 
(1971) calculations, and from Fig. 12 it is in fact seen that for Ne, the energy 
dependence of the measured straggling is in somewhat better agreement with 
Q2Chu (the double dot-and-dash curve). For the heavier elements Ar and Kr, 
Q2Chu and QB2H are in very good agreement, while 02Chu ts systematically 0.05 
Bohr units higher than 0BH for Xe, probably because this element is positioned 
in a maximum of the Z2 oscillatory structure in Q2 revealed by Chu (1976).

From Fig. 12 the only remaining systematic deviation between theory and 
experiment appears to be an underestimate of the predicted straggling at higher 
x values, corresponding to energies above the stopping-power maximum. Since 
Q2 in this energy region becomes small, the deviations may be due to uncer
tainties in Qbh (Eq. (11)), some of which we shall discuss in the following.

In the straggling calculations by Bonderup and Hvelplund (1971), the target 
was considered as a collection of free electron gases, and the straggling contribu
tion from an atom was obtained as an average over the electron cloud of the 
straggling for a gas of constant density. One of the advantages of considering the 
case of straggling in a free gas of electrons is that one is concerned with a simple 
scattering phenomenon: An equilibrium situation is established where the pro
jectile is screened by the electron gas or, equivalently, free electrons are scattered 
in a self-consistent, steady-state screened Coulomb potential. The influence of 
the screening on the straggling contribution from the outer atomic electrons 
(ve < v) is of minor importance since for these electrons, the pure Coulomb 
potential results in the Bohr expression (Eqs. (4) and (5)), which deviates only 
slightly from the electron-gas expression in Eq. (11a).

However, since the relative contribution from the inner electrons increases 
with decreasing x (e.g., for Z2 = 18, Q2inner/Q2total takes on the values 0.63, 0.46, 
and 0.27 at x values of 0.125, 0.41, and 1.52, respectively), the calculated straggling 
at low x is rather sensitive to the detailed screening prescription used for the 
contribution from the inner electrons. It might be questionable whether the 
steady-state screening leading to the explicit dependence ofQ2irmer on the para
meter x2 in Eq. (lib) is established in a collision with a single atom. One can 
obtain an overestimate of the straggling contribution from inner electrons by 
letting the electrons scatter in a pure Coulomb potential around the projectile.
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Mathematically, this is equivalent to a replacement of the quantity /2 in Eq. 
(lib) by unity since /2 is equal to the ratio (ÂF/2a)2, where ÂF is the wavelength 
of an electron at the Fermi surface and a is the static screening length in an 
electron gas (ÂF=h/mvF).

Another type of uncertainty exists in the high-velocity limit of the electron-gas 
expression given by Eq. (11a). The electrons in an atom are influenced by both 
the polarization force corresponding to a local plasma frequency <w0 and an 
orbital force corresponding to the revolution frequency corev. Since corev ~ co0 in 
the simple Bohr atomic model, Lindhard and Scharff (1953) accounted approx
imately for the binding of the electrons in the atomic system by multiplying the 
plasma frequency in the electron-gas calculation by the factor

To get an estimate of the uncertainties underlying the electron-gas calcula
tions, those of Bonderup and Hvelplund (1971) have been repeated with the two 
above modifications of the expressions for the straggling contributions from the 
outer and inner electrons, and as a result, the solid curves in Fig. 12 are replaced 
by the dot-and-dash curves. Of the two substitutions, co() —* a/2w0 t^ie least 
important, and it only gives rise to a 3 % increase in QB2H at the highest x values. 
The dot-and-dash curves are in good agreement with the experimental results at 
the high x values but overestimate the straggling at the low ones, and thus the 
overall agreement is not improved. The results, however, may indicate that the 
discrepancies between the experimental results and the theoretical estimates, 
which are ~ 10-20%, are within the accuracy of the electron-gas calculations.

4.3 Straggling in Light, Monatomic Substances
The straggling results for hydrogen penetrating helium are shown in Fig. 13, 
and the data disclose a characteristic “overshoot” above the Bohr value. In Fig. 
13 are also plotted the results of the electron-gas calculations by Bonderup and 
Hvelplund (1971) (dashed curve), and by Chu (1976) (double dot-and-dash 
curve), together with Fano’s straggling formula (6) (solid curve). The para
meters and S( 1), which enter this formula, have been calculated by Inokuti 
et al. (1978) for atomic systems, and in the case of helium, they obtain = 80.1 eV 
and S(l) = 104.9 eV.

The Fano formula is the result of a perturbation calculation, i.e., the probability 
of an electron excitation is assumed to be small. In principle, all straggling con
tributions are included in the Fano formula, but in practice, only one-electron ex
citations are taken into account fDehmer et al. (1975) and Inokuti et al. (1978)] in 
calculations of Ij and S(l). However, as mentioned in Sec. 4.1, the relative 
importance of the atomic bunching term, which in the Fano treatment can be 
interpreted as the contribution from multi-electron excitations, decreases with 
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decreasing Z2. For helium, the corrections to the Fano curve, with only single
electron excitations included, are therefore expected to be small, but for heavier 
target elements such as argon, the correction might be important.

For energies E 300 keV, the experimental results are in good agreement 
with Fano’s formula, while it fails at low energies, where the assumption v > ve 
is no longer fulfilled.

As was the case for neon, the calculations by Chu are superior to those by 
Bonderup and Hvelplund, and on the whole, the energy dependence of Qchu 
agrees with that of the experimental results. The comparison of absolute values 
is, however, less satisfactory. As shown by the double-dashed curve, this discrep
ancy cannot be removed through an application of the modified electron-gas 
expression described above, and the addition of the small atomic correlation term.

In order to understand the difference between Q2Fano and Q2Chu or Q B2H , one 
has to compare the asymptotic straggling formulas (6) and (11a). The Fano 
formula is based upon the sum rules for the generalized and the dipole oscillator 
strengths FOi (ç) and fOi, and for large and small momentum transfers hg, these 
sum rules are given by

E^co01F0i ç + | < K >0, q large (27a)

S( 1) = ÇhmOifoi = K >0 TS S < >j, q small (27b)

where < K >0 is the mean kinetic energy of an electron in the ground state of the 
target system. Using these sum rules, Fano calculated the contribution from the 
close and distant collisions, but in the combination of the two contributions to 
the final formula (6), it was assumed that

<K>0 = Shco0if0i = S(l) (28)
i

As illustrated by the example of an electron gas, the neglect of the correlation 
term in Eq. (27b) may be quite serious for the evaluation of the correction to 
the Bohr formula. In this case, all of the dipole oscillator strength is contained 
in the plasmon excitation, and the left and right-hand side of Eq. (28) are equal 
to 2mv| = (0.12//2)1/2 h<z)0 and hco0, respectively. Applying the correct sum 
rules Eq. ( 27)) for an electron gas, we obtain, as expected, the two terms in the 
square brackets of Eq. (11a). In the high-density limit, /—► 0, the second term 
in Eq. (11a) may be neglected, and the constants in front of the logarithms in 
Eqs. (11a) and (lib) differ by a factor of 2.

In the asymptotic expression (6), shell corrections and other terms of order 
<ve2>/v2 have been neglected as compared to the logarithm. This may not be a
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Fig. 13: Experimental energy
straggling data for H ions in He 
compared with theoretical results. 
Upper solid curve: the asymptotic 
Fano straggling formula (6); dashed 
curve: theoretical values by Bonderup 
and Hvelplund (1971); double 
dot-and-dash curve : theoretical 
values by Chu (1976);--------- curve :
Qb2h , modified (as explained in text), 
plus the atomic correlation term, 
which, in the case of He, is given 
approximately by Eq. (15) times 0.5 
with nrj- equal to lOtta^, cf. IE

Fig. 14: Experimental 
energy-straggling data for 
He ions in He compared 
with the asymptotic Bohr 
(1948) (Eq. (5)) and Fano 
(Eq. (6) straggling formulas 
(upper solid curve). 

Fig. 15: Energy straggling 
for H and He ions in He 
versus energy per nucleon. 
Solid curves through the 
experimental data are drawn 
only to guide the eye.
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very good approximation at the relatively low projectile velocities, at which the 
correction to the Bohr formula becomes significant. Again, the electron gas pro
vides a convenient illustration. The energy appearing in Eq. (6) is equal to 
hco0, as obtained from the defining equation (7), and at normal atomic electron 
densities, this energy is quite low as compared to the value 2mvF2 implied by 
Eq. (11a). To obtain this expression, which was found to be in good agreement 
with the exact values evaluated numerically by Bonderup and Hvelplund (1971), 
it was necessary to include terms of order one as compared to terms of order 
log(v/vF) in the expansions. The good agreement between the experimental 
results and Eq. (6) may therefore be somewhat fortuitous. On the other hand, 
the statistical description underlying the electron-gas calculations, i.e., Q2Chu and 
Qb2h , is probably rather inaccurate for a very light atom such as helium.

In Fig. 14, the experimental straggling results for helium ions transmitted 
through a helium target are compared to the asymptotic Fano formula (solid 
curve). Both the energy dependence and the absolute magnitude of the discrep
ancy between theory and experiment deviate significantly from the values for 
hydrogen ions shown in Fig. 13. To understand the deviation, we proceed as 
in Sec. 4.1 by plotting in Fig. 15 the experimental values of Q“/Q| as a function 
of energy per nucleon for helium ions and for protons, and the difference between 
the two averaged curves in Fig. 15 is plotted as points in Fig. 16. As expected, 
these difference values for helium mainly contain contributions from charge-state 
fluctuations (lower solid curve), and the atomic correlation term (dot-and-dash 
curve) only amounts to a small correction. The figure has been discussed in 
detail in Sec. 4.1.

Fig. 16: The deviation from 
the Zj scaling of energy 
straggling for H and He ions 
in He versus energy per 
nucleon. The points display 
the difference between the 
experimental He and H re
sults in Fig. 15. The con
tribution from charge-state 
fluctuations (Eqs. (19) 
and (26)) for He ions, meas
ured in units of Qg(He), is 
given by the lower solid 
curve, whereas the upper 
solid curve shows the in
correct value of Q* calculated previously under the assumption that the stopping cross section 
for He+ is equal to that for protons. The difference between the atomic correlation terms (for He 
given by Eq. (15) times 0.5, cf. II, and zero for H2) in units of Qj for He and H ions is re
presented by the dot-and-dash curve for an atomic area of lOfta^. When the contribution from 
charge-state fluctuations is added, the dashed curve results.



40:9 29

4.4 Molecular Correlation Effects
In Figs. 17 and 18 are shown the experimental straggling data for hydrogen and 
helium ions in N2, O2, and CO2. To investigate the molecular correlation effect, 
we need information on the straggling in targets where the molecules have been 
dissociated into their constituent atoms. Experimentally, it is extremely difficult 
to obtain such dissociated targets, and therefore neon was chosen as an atomic 
reference in the evaluation of molecular correlation effects. According to Bonderup 
and Hvelplund (1971), the Z2 dependence of the straggling normalized to the 
asymptotic Bohr value is very weak when plotted as a function of the reduced 
variable x, and it is therefore a good approximation to use neon as an atomic 
reference for .N2, O2, and CO2.

In Figs. 19 and 20, the straggling results for the molecular and atomic targets 
are therefore shown as a function of x. It is evident that the molecular targets 
cause a consistently higher straggling than the atomic ones, and the difference 
between the curves may be interpreted as a molecular correlation effect.

For N2 and O2 in Figs. 19 and 20, the molecular bunching term , calculated 
from the asymptotic formula (17a) with experimental stopping cross sections 
taken from I, is indicated by arrows. It is seen that both the energy dependence 
and the absolute value of the correction term are in fairly good agreement with 
experimental data.

However, the applicability of the asymptotic formula (17a) is questionable 
since the assumption underlying this expression is far from being fulfilled. This is 
seen by a comparison of the internuclear distances in nitrogen and oxygen 
(d(N2) = 1.1Å and d(O2) = 1.21 Å) with the atomic radius rA = 1.65 Å for an 
atomic area of lOrca^. Nevertheless, if it is correct that the smaller of the two values 
in Eq. (17) gives a reasonable estimate of the molecular correlation term , the 
asymptotic formula (17a) is, in fact, the appropriate expression forQ„ in the case 
of oxygen, and it only overestimated f°r nitrogen by ~ 10 %.

According to Sigmund (1976), the description of the molecular correlation 
effect in diatomic molecules can easily be generalized to polyatomic molecular 
targets, for which the straggling correction per molecule takes on the form

= (29)
i +j Z7Caij

where the sum extends over the constituent atoms i = 1,2,... of the molecule. 
This correction term is indicated in Figs. 19 and 20 for CO2, and again, reason
ably good agreement with the experimental results is found.

It should be noticed that for CO2, which is a linear molecule, the same type 
of correlation term as that in Eq. (29) is obtained if the somewhat different treat
ment of correlation effect described in II is used. Generally, for nonlinear poly
atomic molecules, Eq. (29) may overestimate the influence of molecular correla
tions.
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Fig. 17: Experimental 
straggling data for H ions 
in N2, O2, and CO2.

E(keV)
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Fig. 18: Experimental en
ergy-straggling data for He 
ions in N2, O2, and CO2.

E (MeV)
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Fig. 19: Straggling results 
for protons in N2, O2, and 
CO2 from Fig. 17 are com
pared with straggling results 
for protons in Ne from Fig. 7. 
Solid curves drawn through 
the experimental results are 
drawn only to guide the eye, 
whereas the arrows indicate 
the asymptotic molecular- 
correlation term Qm (Eqs. 
(17a) and (29)).
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Fig. 20: Straggling resul' 
for He ions in N2, O2, an 
CO2 from Fig. 18 are con 
pared with the stragglin 
results for He ions in Ne froi 
Fig. 8. The solid curve 
through the experimental re 
suits are drawn only to guid 
the eye, whereas the arrov 
indicate the asymptotic mt 
lecular correlation term Q 
(Eqs. (17a) and (29)).
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4.5 Straggling in Hydrogen
rhe straggling results for hydrogen ions transmitted through a hydrogen target 
are shown in Fig. 21 together with the results from the asymptotic Fano formula

Fig. 22: Experimental energy
straggling results for protons 
penetrating a H2 target com
pared with the asymptotic 
straggling formulas of Bohr (Eq. 
(5)) and Fano (Eq. (6)), the 
latter calculated for molecular 
(solid curve) and atomic targets 
(dashed curve). Arrows indicate 
the molecular correlation term 
Qm given by Eq. (17b).

(6) for molecular (the full-drawn curve) and atomic (the dashed curve) hydrogen. 
The values of S(l) and It for molecular and atomic hydrogen have been calcu
lated by Zeiss et al. (1977) and Inokuti et al. (1978), respectively, and they are 
shown in the table below.

I, (eV) J-S(l)(eV)
/j‘2

H2 29.13 eV 22.79 eV

H 24.07 eV 18.13 eV

The difference in Ix and S(l) reflects the change in electron density and thereby 
in the oscillator-strength distribution upon molecular formation.

When H2 molecules are considered as the basic target elements in the 
straggling calculation, molecular correlation effects caused by two-electron exci
tations in an H2 molecule are in principle included in the Fano formula, but as 
for He not in practice since the Ij and S(l) values for H, only include one- 
electron excitations. However, according to the discussion in Secs. 4.1 and 4.3, 
the molecular bunching term Qy is small for hydrogen, and the good agreement 
between the experimental data and formula (6) for energies as low as 80 keV 
therefore supports the Fano formula.

To indicate that the molecular correlation term actually is fairly small 
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for hydrogen, calculated from Eq. (17b) is shown in Fig. 21. Equation (17b) 
is used since the intermolecular distance is only 0.74Å and the asymptotic for
mula (17a) would overestimate by a factor of ~2.5.

Fig. 22: Experimental energy
straggling results for He ions in 
H2 compared with the asymp
totic straggling formulas by Bohr 
(Eq. (5)) and Fano (Eq. (6)). 
Arrows indicate the molecular 
correlation term given by 
Eq. (17b).

In Fig. 22, the experimental straggling results for helium ions penetrating 
hydrogen are compared with the results from the asymptotic Fano formula (6) 
for molecular hydrogen. A combination of three different effects leads to an 
increase of the straggling to a factor of as much as 2.6 above the atomic Bohr value. 
Of the three effects, i.e., (i) the “overshoot” in Eqs. (6) and (11a) caused by the 
non-vanishing electron velocities, (ii) the molecular correlation effect, and (iii) 
the charge-state-fluctuation effect, the latter being by far the dominating one for 
a hydrogen target. This is seen from Fig. 23, where the difference between the 
averaged helium and hydrogen results in Figs. 21 and 22 in units ofQg is compared 
to the contribution from the different effects. In the calculation ofQç from Eqs. 
(19) and (26), the capture and loss cross sections by Hvelplund et al. (1976, 1980) 
have been applied. The agreement between the experimental results and the 
dot-and-dash curve, which is the sum of the contributions from , and Qp
(Eq. (6)), is reasonable but certainly not as good as for the helium case in Fig. 16.

4.6 Connection to Other Measurements
As argued in II, the straggling of light, swift ions may be theoretically simpler in 
a solid than in a gas. In a solid, the effective atomic diameter 2rA 3.3Å is of 
the order of the interatomic distance and the fluctations in the number of ion
atom encounters, and thus the atomic correlation term QA will be small as com-
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Fig. 23: The deviation from the Z/ scaling of energy straggling for H and He ions in H2 versus 
energy per nucleon. The points display the difference between the experimental H2 results in 
Figs. 21 and 22. The contribution from charge-state fluctuations (Eqs. (19) and (26) for 
He ions measured in units of Qg (He) is given by the solid curve. When the contribution 
from molecular correlation effects (Eq. (17b) is added, the dashed curve results. When fi
nally the contribution from the Fano formula (Eq. (6)) is added, the dot-and-dash curve results.

pared to that in a gas of the same area density NAR. Similarly, charge-state 
fluctuations in a gas, resulting in the straggling term Q(2, is for a solid reduced to 
a significantly smaller fluctuation of the screening cloud travelling with the ion. 
Thus we would expect the straggling in a metal to agree approximately with the 
electron-gas results, an expectation which is actually borne out by recent meas
urements by Heine et al. (1979) on aluminium (Fig. 6 in II).

Generally, however, straggling data for hydrogen and helium ions in solids 
deviate from the theoretical electron-gas estimates, and measurements on the 
same target by different groups may even deviate by as much as a factor of two 
(Fig. 7 in II). One of the reasons why it is so difficult to deduce any systematics 
from straggling measurements in solids is probably that the target inhomogeneities 
such as, e.g., non-uniform film thickness and texture effects tend to increase the 
straggling in an uncontrollable way. It is worthwhile to point out, however, that 
in many applications of straggling results to ion-beam analysis of solids, the diffi
culties, which hamper accurate, reliable, and reproducible measurements on 
thin solid films, often are reduced, and thus a precise knowledge of the basic 
straggling term fiL2s caused by fluctuations in electron excitation is still of great 
importance. Experimentally, such information can be obtained for solids only if 
a proper check and/or correction for foil inhomogeneities is performed. Unfor
tunately, only very few experiments on solids have been made with proper control 
of the target conditions, and we shall abstain from a further discussion of straggling 
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data for light ions in solids and concentrate upon the straggling data for gaseous 
targets.

Hvelplund (1968, 1971, 1975) and Bonderup and Hvelplund (1971) performed 
an extensive investigation of energy straggling suffered by keV ions penetrating 
gas targets. A comparison with Hvelplund’s straggling results for hydrogen ions 
transmitted through H2, He, Ne, Ar, Kr, and for helium ions penetrating He 
and Ne is made in the respective figures of this work. For the cases of H —* H2, 
He, Ne, Kr, Hvelplund’s straggling data agree with the present ones within the 
uncertainties, while in the case of H —► Ar and He —* He, Ne at the highest 
energies, the two sets of data deviate by approximately 20 %. The reason for this 
discrepancy is not understood, but it may be mentioned that also the stopping
power data in Ar by Bonderup and Hvelplund appear to be low (see I).

Mason et al. (1966), Ramirez et al. (1969), and Haque and Hora (1972) have 
measured straggling for protons and a particles in gases. In these experiments, 
the mean energy loss is considerable compared to the initial energy, and a com
parison with the present measurements becomes difficult. (If AE is comparable 
to Ej, the measured straggling Q2/NAR will be larger than that for negligible 
energy loss provided the stopping power is a decreasing function of energy, 
Tschalär (1968).) An exception to the above situation is the He—* He data by Ra
mirez et al. (1969), where AE/Ej is only ~ 18 %. For energies of 1.5 EHe 3.5 MeV, 
Ramirez et al. (1969) found that Q/QB is approximately a constant equal to 2.5, 
decreasing slowly with increasing energy. This result deviates drastically from the 
present findings shown in Fig. 14.

Cameron et al. (1977) have measured straggling for low-energy a particles in 
helium. Comparing their data for the lowest energy losses with those shown in 
Fig. 14, good agreement is found for energies below 400 keV, while for higher 
energies, the discrepancy increases with energy, resulting in a difference of a 
factor of 3 in Q2 for E = 1070 keV.

Concerning the above discrepancies in the helium data, it might be mentioned 
that in the experiments by both Cameron et al. and Ramirez et al.-, the energy 
spread of the incident a-particle beam is not negligible as compared to that 
resulting from the penetration of the helium gas, and this might obscure the 
straggling results.

Recently, there has been a growing interest in straggling for heavy ions 
because of its importance for many heavy-ion-accelerator experiments. Efken 
et al. (1975) have measured energy-loss straggling of N, Ne, and Ar ions in He, 
N2, SFg, and Ar-gas targets and in carbon foils at energies of 5-15 MeV. All 
these measurements were performed in the thin-absorber limit AE/Ej ^0.1. For 
monatomic targets, the measured straggling was significantly higher (1.5—2.5) 
than the straggling due to fluctuations in electron excitations, calculated from 
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the Vavilov theory (Vavilov (1957)). Efken et al. attributed this discrepancy to 
the straggling contribution caused by charge-state fluctuations and, using 
either formula (19) or Monte-Carlo calculations to predict Q|, they were able 
to explain their experimental findings qualitatively.

However, their measurements belong to the velocity-proportional stopping 
region v v0Z3/3, and thus the Vavilov theory is not applicable since the assump
tion underlying the Vavilov theory and the Bohr formula (Eq. 5) is similar, 
i.e., all of the target electrons contribute to the straggling as free electrons at rest, 
and the cross section is given by the Thomson formula (Eq. 4). In the low- 
velocity region, the straggling due to fluctuations in electron excitations is small 
as mentioned in Sec. I and discussed in detail in II. The straggling results mainly 
from the statistical distribution in impact parameters in the ion-atom collisions, 
and within the Firsov model, it is given by Eq. (16).

In Fig. 24, the experimental straggling data for heavier ions at low and 
medium velocities by Efken et al. (1975), Hvelplund (1971), Andersen et al. 
(1978), Sofield et al. (1978), and Cowern et al. (1979) are compared with the 
Hvelplund-Firsov low-velocity straggling formula (16) and the high-energy Bohr 
formula (5). When the straggling in Bohr units is plotted versus the parameter 

[(Zx + Z2)8/3/(Zj Z2)] , formula (16) leads to a universal straight line.

From Fig. 24 it is seen that the straggling data by Efken et al. (1975) on 
atomic targets, and also the molecular results, when corrected for the molecular- 
correction term , agree with the general trend of the straggling results by 
Hvelplund (1971) and Andersen et al. (1978) and with Eq. (17) to within a

Fig. 24: The experimental straggl
ing results for heavy ions at low 
and medium velocities by Efken et 
al. (1975), Hvelplund (1971), An
dersen et al. (1978), Sofield et al. 
(1978), and Cowern et al. (1979) are 
compared with the Hvelplund-Fir
sov low-velocity straggling formula 
(16), and the high-energy Bohr 
formula (5). The dashed curves 
through the data of Sofield et al. 
and Cowern et al. are made only 
to guide the eye, whereas the arrows 
indicate the molecular correlation 
term • 
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factor of 1-2. It therefore seems unneccessary to incorporate the straggling term 
Qc to explain the experimental gas data by Efken et al.

In Fig. 24 are also shown the straggling results of Efken et al. for Ne and Ar 
ions on thin carbon foils. These solid-target results are systematically higher than 
the results on atomic gas targets. According to the authors, this may be due to 
the influence of foil inhomogeneities.

First, in Fig. 24 are shown the experimental straggling results of the Harwell 
group [Sofield et al. (1978) and Cowern et al. (1979)] for nearly fully stripped 
16O and 12C ions penetrating aluminum foils. For the lowest energies, the experi
mental results again agree with Eq. (17) to within a factor of 1—2. At the highest 
energies, the data are significantly higher than the predictions based on the 
Livingstone-Bethe formula (Livingstone and Bethe (1937)), which is a semi- 
empirical version of the perturbation formulas, Eqs. (6) and (7), with the atomic 
quantities expressed in terms of ionization potentials and effective charges for the 
various electronic shells. The deviations from the Livingstone-Bethe formula was 
attributed to the straggling contribution from charge-state fluctuations, and 
on the assumption that Q* is given by Eq. (19) and that the partial stopping 
cross sections can be written as Sq = q2Sp, experimental values of the electron
capture and -loss cross sections o56 and <r65 were determined for 12C.

However, the results may be vitiated by large uncertainties. First, the assump
tion that the stopping-power scales as the average square of the charge state may 
lead to an overestimate of the influence of charge-exchange straggling Q 2 even 
though one may expect the error to be smaller than in the helium-ion case dis
cussed above. Also the applicability of the Bethe-Livingstone perturbation for
mula might be questionable since the parameter kb = 2Z!V0/v is of the order of 
unity. A better way to obtain information on Q2 would be to compare the 12C 
results with experimental-straggling results for a lighter ion, which is in a fixed 
charge state, i.e., to use a method similar to that used in Sec. 4.1.

Second, the measurements may be obscured by straggling contributions from 
foil inhomogeneities on a microscopic scale. Such effects were carefully checked 
by the Harwell group by means of a 25-/zm diameter proton beam and a 2 X 0. l-/im 
Tallystep profiler, and it was concluded that thickness variations over distances 
larger than the lateral resolution of 2 X 105Å and 2 X 104Å for the methods con
tribute to the straggling by less than 10 %. It is, however, noteworthy that the 
energy dependence of the straggling is nearly identical to the energy dependence 
of the stopping power, which is exactly what is expected for a contribution Q2ât 
from thickness variations since Q2At = (dE/dx)2At2, where At is the standard 
deviation of the foil-thickness distribution. It may therefore still be worthwhile 
to check for foil-inhomogeneity effects by comparing the straggling in the foils 
for different light ions such as protons, a particles, and lithium ions, for which 
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the influence of charge-state fluctuations is negligible. The applicability of this 
method, which has a high lateral resolution, has been demonstrated by the Oak 
Ridge group (see II for further details).

Finally, in our opinion, the ultimate test of the influence of charge-exchange 
straggling for heavy ions would be obtained from measurements with 12C in a 
gas target since the electron-capture and -loss cross sections are either known or 
can be measured separately, and the problems with target inhomogeneities dis
appear.
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Introduction
It has long been recognized that the astronomical chapters of the Book of Enoch 
constitute a composition of their own without much direct contact with the 
other parts of the treatise. This does not mean, however, that the astronomical 
book is unrelated to the rest of the Book of Enoch. On the contrary, its contents 
reflect faithfully, but in greater detail, the simple cosmologie concepts that 
prevailed in the communities which produced the Enochian literature.

I do not think, however, that one should consider the astronomical chapters 
as a literary unit composed by one author who followed some stylistic reasoning. 
It seems obvious to me that the text, as we have it, consists of two major versions, 
both covering essentially the same material, to which are added several still more 
fragmentary pieces. What we have is not the work of one author (or “redactor”) 
but a conglomerate of closely related versions made by generations of scribes 
who assembled, to the best of their knowledge, the teaching current in their 
community about the structure and the laws of the cosmos. It is also important 
to note that purely calendaric rules on fasts and feasts are conspicuously absent, 
in marked contrast to the later Ethiopie “computus” of Judaic and Christian 
origin.

It is, of course, possible that there existed originally one treatise written to 
codify the astronomical doctrines of a religious sect. Such a treatise would then 
have reached us only in several more or less modified versions, two of which are 
reflected in the present chapters 72 to 76 and 77 to 79,1 respectively. Fragments 
from additional versions are preserved in 79,2 to 80,1 while the description in 82 
of the angelical hierarchy of the stars evidently belongs to a quite different source. 
Furthermore it should be remembered that innumerable fragments of Enochian 
“astronomy” (concerning the variation of the length of daylight, the “gates,” 
the winds, etc.) are scattered all through the Ethiopian “computus”-treatises.

The several chapters of our treatise are grouped around only a small number 
of topics: solar year and lunar months, winds, the hierarchy of the stars, always 
hemmed in by a rigid schematism unrelated to reality. First the reader is told 
about the division of the “solar” year into four seasons of 30 + 30 + 31 days each. 
Then comes the variation of the length of daylight, based on a linear progression 
with extrema in the ratio 2:1. Then the lunar phases are also described by a linear 
pattern, assuming day 14 or day 15, respectively, as full moon dates. The variable 
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illumination of the moon is expressed either in terms of the moon’s illuminated 
area (from 1 to 14 parts) or in relation to the sun’s brightness, thus increasing from 
1/98 (i.e. 1/7-14) to 1/7 (at full moon). Finally lunar months, alternatingly full 
and hollow, are related to the (schematic) solar year (but without any trace of a 
cyclic adjustment) and to the rising and setting in the “gates” at the eastern, 
respectively western, horizon. Unrelated to these gates are the twelve gates for 
the winds, four of which are beneficial, while eight bring discomfort and destruc
tion. In contrast the stars are astronomically totally insignificant, being nothing 
but a replica of the division of the solar year. Neither constellations nor the zodiac 
nor planets are ever mentioned. This remains the rule also for the Ethiopie 
computus until the Arab conquest.

The search for time and place of origin of this primitive picture of the cosmic 
order can hardly be expected to lead to definitive results. The use of 30-day 
schematic months could have been inspired, e.g., by Babylonian arithmetical 
schemes (of the type of “Mul-Apin”), or by the Egyptian calendar. But the number 
and location of the epagomenal days was obviously chosen under the influence 
of the Jewish seven-day week and has no parallel elsewhere. The linear pattern 
for the variation of the length of daylight as well as the ratio 2:1 of its extrema 
suggests an early Babylonian background. But there is no visible trace of the 
sophisticated Babylonian astronomy of the Persian or Seleucid-Parthian period.

Dillmann’s statement1 that the astronomical part of the Book of Enoch is 
based on concepts extant in the Old Testament is simply incorrect: the Enoch 
year is not an old Semitic calendaric unit; the schematic alternation between 
hollow and full months is not a real lunar calendar, and there exists no linear 
scheme in the Old Testament for the length of daylight, or patterns for “gates”, 
for winds, or for “thousands” of stars, related to the schematic year. The whole 
Enochian astronomy is clearly an ad hoc construction and not the result of a 
common Semitic tradition.

1 : Dillmann, Henoch, p. 220.

Summary of the Contents of Ch. 12 to 82
First Version: 72 to 76 (with 74 probably being an intrusion)

72,2—5 : Gates and Windows; winds drive the chariot of the sun (cf. 73,2 and also 18,4) 
6 -36: length of daylight, M.m = 12:6; year of 4■ 91d = 364d

37 : brightness and size of sun and moon (cf. 73,3; 78,3,4)
73,1-3:  winds drive the chariot of the moon (cf. 72,5); brightness of sun and moon

(cf. 72,37; 78,4)
4-8 : increase of the area of illumination and of brightness of the moon from day 1 
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to day 14 (incomplete); first visibility on the preceding day 30(i.e., after a 
hollow month)

74.1- 4: illumination of the moon during 15 days (i.e., for a full month)
5-9 : Gates and moon rise (incomplete)

10-16 : garbled description of an octaeteris
75.1- 7: stars (“thousands”) and seasons (cf. 82,4-20)

8,9: circumpolar stars
76,1—13: the 12 gates of the winds and their qualities (cf. the short version 33 to 36) 

14: concluding words to Methuselah (cf. 79,1)

Second Version
77

78.1
2-5

6-14
15,16

17
79.1

77 to 79,1
Mythical geography 
two-division of the year (cf. 78,15,16; 79,4,5) 
lunar phases; size and brightness of sun and moon (cf. 72,33-37); Gates 
lunar visibility, waning moon; hollow and full months (cf. 73,4-8 and 74,1-4) 
two-division of the lunar year (cf. 78,1 ; 79,4,5) 
visibility of the moon during night and daytime 
concluding words to Methuselah (cf. 76,14)

Additional Fragments: 79,2 to 80,1; 82,4-20 (80,2 to 82,3 intrusion: apocalyptic)
79,2,3: Gates and lunar phases

4,5: two-division of the Enoch-year (cf. 78,1,15,16) and Enoch epact
6,80,1 : concluding speech of Uriel

82,4-20: hierarchy of stars (“thousands”), their leaders during the Enoch year (cf.
75,1).

It seemed tempting to utilize in this commentary to the astronomical chapters of 
the Book of Enoch the numerous parallels and variants found in the Ethiopie 
“computus” treatises.2 Since, however, practically all of these texts are unpublished 
and since only a detailed study could bring order and relative completeness to 
this huge mass of material,3 I have usually abstained from referring to such 
“secondary” sources, though they may well contain information more reliable 
than the Book of Enoch in its present condition. I made good use, however, of 
the possibility of discussing my interpretations of the text with Professor Ephraim 
Isaac at the Institute for Advanced Study in Princeton.

2 : Cf. for these texts my EAC.
3 : The majority of printed catalogues deals only in a very unreliable fashion with treatises of this type.

In many ways every student of Enoch is indebted to Dillmann’s pioneering 
work. When deviating from it in some technical details, however, I did not find 
it necessary always to quote Dillmann’s translation and notes. In particular I did 
not refer to all the cases where the mix-up between the “gates” in the horizon 
and the modern concepts of orbital motion in the ecliptic produced misleading 
explanations. The insight into its archaic primitiveness is the key to understanding 
Enochian “astronomy.”
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Chapter 72
1. Book on the Motion of the Luminaries of the Heaven, how each one of them 

stands in relation to their number, to their powers and their times, to their 
names and their origins and their months, as the holy angel Uriel, who is their 
leader, showed to me when he was with me. And he showed to me their whole 
description as they are, and for the years of the World to eternity, until the creation 
will be made anew to last forever.

2. This is the first law of the luminaries: the light (called) Sun has its exit 
among the gates of heaven in the east and it sets among the gates of heaven in 
the west.

3. And I saw six gates from which the sun rises and six gates where the sun 
sets; and (also) the moon rises and sets in these gates, as well as the leaders of the 
stars together with those which they lead. Six (gates) are in the east and six in 
the west and all of them are arranged in sequence. And there are many windows 
to the right and to the left of these gates.

4. And first comes out the great light called Sun and its roundness is as the 
roundness of heaven and it is all filled with fire that illuminates and heats.

5. And the chariot in which it rises the winds drive. And the sun goes down 
from the heaven and it turns toward north in order to travel toward the east; 
and it is guided in such a way that it enters in the (proper) gate and shines (again) 
in heaven.

6. In this way (the sun) emerges in the first month from the great gate, the 
fourth of these six gates in the east.

7. And in this fourth gate from which the sun emerges in the first month there 
are twelve wdndow-openings from which flames come forth when (these windows) 
are opened in their (proper) times.

a. 8 When the sun rises in the sky it rises from this fourth gate (during) 30 
days; and the sun sets exactly in this (fourth) gate in the west. 9 And in these days 
the day increases over the (preceding) day and the night decreases from the 
(preceding) night during 30 days. 10 And on this (30th) day the day is two ninths, 
(i.e. two) “parts”, longer than the night, the day being exactly 10 parts and the 
night exactly 8 parts. " And the sun rises from the fourth gate and sets in the 
fourth (gate).

b. (Then) the sun moves to the fifth gate in the east, for 30 days, and it rises 
from it and it sets in the fifth gate. 12 And then the day increases two parts and 
the day amounts to eleven parts and the night decreases and amounts to seven parts.

c. 13 And (the sun) returns to the east and enters the sixth gate and it rises 
and sets in the sixth gate (during) 31 days according to its (the gate’s) characteristics 
(for the season). 14 And during these days the day increases over the night (until) 
the day is twice (as long as) the night, such that the day amounts to twelve parts 
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and the night decreases and amounts to six parts. 15 Then the sun sets out to 
shorten the day and to lengthen the night.

d. And when the sun returns to the east it enters the sixth gate and it rises 
from it and it sets (in it during) 30 days. 16 And when the 30 days are completed 
the day has decreased exactly one part and the day is eleven parts and the night 
is seven parts. 17 And then the sun leaves this sixth gate in the west and

e. travels toward east to rise in the fifth gate (during) 30 days and it sets also 
in the west in the fifth gate. 18 And on this day the day has decreased two parts 
and the day is ten parts and the night is eight parts. 19 And the sun rises from the 
fifth gate and it sets in the fifth gate in the west.

f. (And then) it rises in the fourth (during) 31 days (according to) its (the 
gate’s) characteristics (for the season), and it sets in the west. 20,On this day the 
day equals the night and they are the same and the night is nine parts and the 
day is nine parts. 21 And the sun rises from this (fourth) gate and it sets in the west.

g. And (then) it returns to the east and it rises from the third gate (during) 
30 days and it sets in the west in the third gate. 22 And on these days the night 
increases over the day and the night increases over the (preceding) night and the 
day decreases from the (preceding) day until 30 days and the night is exactly 
ten parts and the day eight parts. 23 And the sun rises from this third gate and it 
sets in the west in the third gate.

h. And (then) it returns toward the east and the sun rises (during) 30 days in 
the second gate in the east and it sets also in the second gate in the western sky. 
24 And on this day the night is eleven parts and the day seven parts. 25 And in 
these days the sun rises from this second gate and sets in the west (also) in the 
second gate.

i. And (then) it returns to the east to the first gate (during) 31 days and it 
(also) sets in the first gate in the western sky. 26 And on this day the night has 
increased to become twice (the length of) the day and the night is exactly 12 parts 
and the day is 6 parts.

k. 27[And the sun has (thus) completed its appearances (in all gates) and 
then returns to these (same) appearances and it rises (again) in all its gates (during) 
30 days and it sets opposite to them in the west.]

l. 28 And (during) these days the night has decreased by a ninth part (of its 
mean length), that is by one part; and the night consists of eleven parts and the 
day of seven parts.

m. 29 And the sun returns and enters the second gate in the east [and it returns 
to these appearances] during 30 days, rising and setting (in the second gate). 
30 And in these days the night decreases in its length and the night is ten parts 
and the day eight parts. 31 And in these days the sun rises from the second gate 
and sets in the west.
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n. And (then) it returns to the east and it rises in the third gate (during) 
31 days and it sets in the western sky. 32 And in these days the night decreases 
and it is 9 parts and the day is 9 parts and the night equals the day. [And the year 
is exactly 364 days (long)].

33. And the length of the day and the night and the shorteness of day and 
night vary with the circuit of the sun,

34. because its course becomes longer day after day or shorter night after 
night.

35. And this is the rule for the circuit of the sun, when it returns (to the east) 
and rises (again). This great luminary is called “sun” for all eternity.

36. And what rises is the great luminary and it is named according to its 
appearance as the Lord has commanded.

37. And it rises and similarly it sets and it does not diminish (in brightness) 
and it does not rest, but travels day and night. And its light is seven times as 
bright as the (light of the full) moon but with respect to their size the two are 
equal.

Notes to Chapter 72. Sun and Moon
The composition of this chapter is very simple: its core is formed by twelve 
strictly parallel verses that describe the variation of the length of daylight and 
night during the year. To this tabulation is added a general introduction (2 to 7) 
about the six “gates” on the eastern and western horizon where the sun rises and 
sets. Similarly the tabulation is followed by some general remarks (33 to 37) 
about the sun and its role in the universe.

This structure of the chapter has been obscured by dividing the text into 
twenty-five verses unrelated to the original tabulation. I have therefore compiled 
a table (opposite) which shows the original pattern. Needless to say, there are many 
small variations from sentence to sentence. A serious disturbance occurred in 
verse 28 where a gloss (27) intruded into the text (with a repercussion still visible 
in 29). But Table I makes it easy to restore the basic scheme for each month:

“The sun returns (from the preceding gate) to the east and enters the next 
gate in which it rises — and sets in the west — for 30 (or 31) days. During that 
time the days increase/decrease and the nights decrease/increase such that 
the day becomes ... (parts), the night... (parts). Sunrise — and sunset in the 
west — takes place in this gate”.

Twelve such sentences are the exact equivalent of our Table II or of the graph 
Fig. 1. Similar verbal presentations of tabular material are not only found 
frequently in Ethiopie computus texts but also in Aramaic fragments (Milik,



10 40:10

TABLE II

month 1 in gate 4 during 30 days, ending in 10p of daylight, 8P of night
2 5 30 11 7
3 6 31 12 6
4 6 30 11 7
5 5 30 10 8
6 4 31 9 9
7 3 30 8 10
8 2 30 7 11
9 1 31 6 12

10 1 30 7 11
11 2 30 8 10
12 3 31 9 9

Enoch, pp. 278 281). I have no doubt that the same genesis underlies also the 
next chapter.

72.1. Preamble, giving a summary of topics concerning the celestial luminar
ies. The expression hezabihomu, literally “their tribes, populations”, obviously 
refers to the hierarchical grouping of the stars. Similarly éeltanomu means “their 
powers”, exercised by the stars over the division of the year, the seasons and the 
epagomenal days. Cf. for all these influences 75,1-7 and 82,4-20.

72,2,3. In the course of the year sun and moon rise and set in six “gates” on 
the eastern, respectively western, horizon. To the right and to the left of these 
gates are “windows”, presumably for the stars (whereas in 36,2,3 “small gates” 
are assigned’to them). It should be noted that “right” and “left” are not the same 
as “south” and “north” since these associations are reversed with the change of 
direction of the observer.

Verse 3. “Arranged in sequence” probably refers to the numbering of the 
gates from one to six or from south to north.

72.4. The “roundness” (kebabu) of the sun corresponds to the roundness of 
the heavenly cupola. Neither “Umkreis” (Dillmann) nor “disc” (Knibb) are 
suitable descriptions of the sky.

72.5. Here we are told that the chariot of the sun (and of the moon, cf. 72,2) 
is blown by winds, and that the sun, after setting in the west, returns via the north 
to the east. Independent of this motion of the luminaries is the (daily) rotation of 
the heaven, i.e. of the stars, which is also caused by winds (18,4). A slightly dif
ferent picture is found in 41,5 where sun and moon are said to come out from, and 
return to, “chambers” (mazägebt). Similar differences are recognizable for the 
stars: “windows” in 72,2,3, “gates” in 36,2,3.
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Fig- F

72,6 to 32. The essential content of these verses is summarized in Table II 
and in the graph of Fig. 1. Note that the linear pattern for the length of daylight 
and night ignores the epagomenal days (as is admitted in 75,1).

Fhe variation of the length of daylight and night during the solar year is here 
described by a numerical sequence that alternates, with constant difference, 
between a maximum M and a minimum m. If one chooses the simplest increment,
i.e.  if one makes the monthly difference “1 part” (p), then one has M= m + 6. If 
one furthermore assumes that M = 2m, then one finds finally m — 6P, M — 12p 
(and always daylight + night = 18p). This is exactly what we have in our text.

The use of such an alternating sequence (known as “linear zigzag function”) 
suggests a Babylonian origin, since functions of this type play a fundamental role 
in Babylonian astronomy. For the length of daylight we find in cuneiform texts 
two ratios: one M\m = 3:2, the other (in earlier texts, e.g. in the series “Mul- 
Apin”) M:m = 2:1. In the first case the units of time are “large hours” (i.e. 4 of 
our hours), in the second case we deal with “manas”, i.e. weights of water, out
flowing from a cylindrical water clock.4

In our texts the “parts” are never connected with any meteorological unit, 
neither hours, nor weights or volumes. Hence borrowing from Mesopotamia

4: Cf. Neugebauer, The Water Clock in Babylonian Astronomy, Isis 37 (1947), pp. 37-43. 
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remains only a possibility, though supported by another (slightly conjectural) 
feature, an 18-division of the day (counted in manas) in Mul-Apin.5

Of course a borrowing from comparatively early Babylonian material cannot 
be used as a chronological criterion for the time of composition of the astronomical 
section of the Book of Enoch. Methods of this kind have a life-span of many 
centuries and easily survive the development of more advanced methods.

72,6 to 11. In month 1 the sun emerges from gate 4 and the length of daylight 
increases during this month from 9P to 10p. Note that this implies that the year 
begins at the vernal equinox (as in Babylonia) whereas the Ethiopie calendar 
follows the Alexandrian year that begins with the month Thoth, roughly Sep
tember.

Why is gate 4 called “large”? Dillmann6 thinks of a comparison with the 12 
windows which eject flames (72,7). Are other gates not provided with such 
windows?

Verse 11. After 30 days the sun returns (yegabe’) from gate 4 in the west (via 
the north) to gate 5 in the east.

72,13 and 19. The translation of te’emerta zi’ahä as “its sign” is misleading 
since it could be taken as a reference to zodiacal signs7 (which do not exist in 
Enoch’s astronomy). The purpose of this remark, however, is to explain that 31 
days of the sun’s risings in the same gate is indicative for the position of the equi
noxes and solstices. The Greek equivalent of te’emert is Cr||j£ÏOV used in a tech
nical sense,8 in particular in relation to meteorological and calendaric dates 
(éniormaivElv).9 Hence we may say that the rising of the sun in a specific gate is 
“indicative” or “characteristic” for the seasons. Of. also 75,6 and 82,16 and 19.

Verse 19. As Fig. 1 (p. 11) shows, the autumnal equinox occurs when the sun 
rises at the beginning of gate 3 in month 7.

72,27. Dillmann rendered ’ar’estihu by “Bahnabschnitte” (hence Knibb: 
“division of journey” — instead of “orbital segments”). It seems to me, however, 
that no reference to the sun’s “orbit”10 — at any rate a much too modern concept 
— is intended. In my opinion what is meant is simply the appearances (literally 
the “heads”, the “beginnings”) in the consecutive gates. This interpretation is 
supported by a variant in Tänä 9: ’ar’ayâhu, indicating something like “appear
ances”. Cf. also next section.

5: This connection between Mul-Apin and the Book of Enoch was suggested many years ago by 
A. J. Sachs (cf. Neugebauer, l.c note 4, p. 40).

6: Dillmann, Henoch, p. 222.
7 : So expressly by Charles.
8: Cf. e.g., also Matth. 16,3 or]peîa TÖV KCupÔv “the signs of the time”.
9: Cf. e.g.. Ptolemy’s work (Pàoeiç ànÀavcDv àoTÉpGûv Kai ouvaycDyr) énionpaaicùv (Opera 

minora, pp. 2-67). Cf. also RE Suppl. 7 col. 176 198 [Rehm],
10: Not to ask: the daily orbit? the yearly orbit? what are “Bahnabschnitte”?
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72,33 to 35. The variability of the length of daylight and night is caused by the 
variability of the sun’s positions in the gates (cf. verse 27), i.e. by the changing 
rising amplitude, as is indeed the case.

A number “60” (of risings and settings?) in verse 35 is omitted in several 
manuscripts (among them Tänä 9). This seems to be the better version.

72,37. The sun’s brightness never changes (in contrast to the moon) and it is 
sevenfold the moon’s greatest brightness11 (cf. 73,3 and 78,4). Their apparent 
sizes, however, are equal (cf. 78,3).12

Chapter 73
1. And after the rule (concerning the sun) I saw another rule about the smaller 

luminary, called Moon.
2. And its roundness is as the roundness of heaven and the chariot on which 

it travels is driven by winds; and light is given to it in measure.
3. And each month its place of rising and of setting varies (through all gates) 

but its days are as the days of the sun. And when its light is evenly spread (over 
its disc) then it amounts to one seventh of the light of the sun.

4. And thus (the lunar month) begins, when (the moon) itself moves away 
(from the sun) toward east on the 30th day, and (when) on this day it becomes 
visible it is for you the beginning of the (lunar) month on the thirtieth day, (when 
the moon is setting) together with the sun in the gate from which the sun rises,5' (but) 
at a distance (from the sun) of half of a seventh part.

And its whole disc is empty (i.e.) without light, excepting its seventh part of 
a fourteenth part (i.e. 1/98) of the light (of the sun).

6. And on (this) day (the moon) takes on a seventh part of one half (i.e. 1/14) 
of its light, and (thus) its light is the seventh of a seventh part and one half of it 
(i.e. 1/98 of the light of the sun).

7. (The moon) sets with the sun and when the sun rises, the moon rises with 
it and it takes on one half part (of 1 /7) of its light. And in this night, at the beginning 
of the (lunar) day, which is the first day of the month, the moon sets with the sun, 
and it is dark in this night. — A seventh of a seventh part and one half.

8. And the moon rises and comes out on this day with exactly the seventh part 
(of its total light) and recedes from the rising of the sun and it (the moon) is

11: Dillmann (Henoch p. 226) suggests a derivation of this ratio from Isaiah 30.26. This passage 
(and similarly Enoch 91,16), however, does not compare the sun with the moon but deals 
with some future events in the universe.

12: This is very nearly correct, as is common knowlege in ancient astronomy (based on evidence 
from solar eclipses).
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illuminated during the remaining (part) of its day a sixth (?) and a seventh part 
(of the light of the sun).

Notes to Chapter 13. The Moon's Variable Illumination
The original arrangement in this chapter was probably similar to the arrangement 
in the preceding chapter: a central tabulation preceded (and perhaps also followed) 
by general remarks. In the extant version, however, only the introduction is 
preserved (verses 1 to 3) while the tabulation breaks off after day 2. No doubt 
originally all days until full moon (day 14) had been listed. Instead we find now 
a disorganized chapter (74) which obviously does not belong to the original 
composition.

73,1 to 3. The moon’s chariot is driven by winds (cf.72,5) and the roundness 
of the moon is as the roundness of the heavens.13 Light is given to the moon (from 
the sun) and produces at full moon one-seventh of the sun’s brightness (cf. 72,37 
and 78,4). The rising and setting points of the moon change rapidly, but the 
number of “days” in a lunar calendar is the same as the corresponding number 
of solar days (73,3); for example, day 14 has the same distance from day 1 in a 
lunar calendar as a solar day 14 from solar day 1, in spite of the variability of the 
moments of moon-rise and moon-set in relation to sun-set. — For 73,2 cf. also 78,4.

73,4 to 8. In these verses we have a fragmentary description of a linear scheme 
for the increasing illumination of the moon during the first half of the lunar 
month. This increase is expressed in two scales: first, in absolute terms from lp 
to 14p (hence proportional to the illuminated area),14 and, secondly, in terms of 
solar brightness, hence increasing from 1/14-1/7 = 1/98 on the first day to 1/7 
at full moon (cf. 73,3). Our text represents only a fragment of this scheme, which 
concerns the first two days. But the whole scheme is preserved in several computus 
texts (cf. EAC, p 196) the only difference being that a “full month”, i.e. a 15-day 
increase, is contemplated.

Some trouble has been caused by an unfortunate terminology used in this 
section: the term sebäh “morning” here stands for “day” (as we sometimes count 
“summers” as “years”, or winters” (keramt) in Ethiopie). To retain in astronomical 
context the literal meaning of an idiom of this type leads to senseless translations; 
e.g., “on that night at the beginning of its morning, at the beginning of the moon’s

13: Knibb’s MS has “sun” instead of “heaven”. The parallel with 72,4 shows that “heaven” is the 
better version.

14: The “parts” (’eda) here have nothing to do with the “parts” (kefla) in 72,6 to 32. 
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day”,15 instead of “on that night, at the beginning of the (lunar) day, which is 
the first day of the month”.

73.4. To say that a lunar month begins on “day 30” characterizes its predecessor 
as a hollow month.16 At the beginning of the new month the moon has obtained 
enough (easterly) elongation from the sun to be visible at sunset. At conjunction, 
however, the moon is still nearer to the sun and thus rises and sets (invisibly) in 
the same gate as the sun. (Of course, all this is only that simple in the schematic 
lunar calendar which ignores, of necessity, all complexities of the actual lunar 
motion).

The conclusion of this verse is incorrectly assigned in part to the next verse. 
It contains the statement that the elongation of the moon from the sun at the 
evening of first visibility is 1/14 of the total elongation (reached at full moon). 
The use of reheqa in the technical sense of “elongation” is well attested in com
putus treatises. We read, e.g., in BM Add 24995 (28a 11,1): “On the second day 
(the moon) recedes (yerheq) from the sun and becomes visible at 8 kekros and 
illuminates 2 parts of 15 (of its greatest) light (at full moon) and 1 part of 98 
(parts) of the light of the sun”. Incidentally, this close parallelism supports our 
conclusion that verses 73,4 to 8 are only a fragment of a complete table for the 
moon’s illumination, both absolute and in relation to the sun.

73.5. The numerical data for day 1 are: darkness of the moon’s disc excepting 
1/2-1/7 of its area that shines with the brightness of 1/7-1/14 (=1/98) of the 
sun’s light.

73.6 to 8. The numbers in these verses are obviously corrupt as the many 
variants show, in part probably caused by the usual confusion of sixes and sevens. 
Both translation and notes are therefore only tentative and show not much more 
than that we are dealing with the description of the moon’s increasing illumina
tion. The text ends abruptly after verse 8.

73.6. The daily increment of the moon’s illuminated area is 1/14. Its brightness 
on the first day of the lunar month amounts to 1/7 • 1/7-1/2 (=1/98) of the sun’s 
light.

73.7 and 8. On day 1 the moon is still near conjunction and therefore (nearly) 
rises and sets at the same time as the sun (cf. 73,4). The number 1/71/7-1/2 at 
the end of verse 7 is perhaps a meaningless duplication from verse 6.

Turning to day 2 (in verse 8) the moon’s illuminated area is 2/14 = 1/7. It 
follows again a remark about the increasing elongation, but one should expect a

15: Knibb, p. 172 (73,7). Cf. also Gen. 50,3 and Num. 13, 25 in the Ethiopie Bible (E. Isaac). “Morn
ings” for “days” is also well attested in computus texts.

16: This is standard terminology in Babylonian astronomy, cf. F. X. Kugler, Die Babylonische Mond
rechnung, Freiburg 1900, p. 36.
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motion “away from the sun toward east” (as in verse 4) instead of a “receding from 
the rising sun”. Perhaps this is simply a scribal error. Why the “remaining part 
of the day” is mentioned in the present context I do not know. For the brightness 
of the crescent on day 2 one should expect 1/7 • 1/7 (of the sun’s brightness) and, 
indeed, some variants contain these numbers.

Chapter 74
1. And I saw another circuit and (another) rule for it (the moon), whereby 

according to that rule it produces the cycle of the months.
2. All this showed to me Uriel, the holy angel, who is the leader of all of them. 

And I wrote down their positions as he showed them to me and I wrote down 
their respective months and the phases of their illumination until full moon on 
the fifteenth day.

3. And in steps (of fractions) of sevenths (lit. single seventh parts) the full 
moon is completed in the east and in steps (of fractions) of sevenths complete 
darkness is reached in the west.

4. In certain months (the moon) changes (the location of) its settings (with 
the sun, but) in certain months it goes its own individual way.

5. In two months (the moon) sets with the sun in these two middle gates, that 
is in the third and fourth gate.

6. (The moon) comes out (from the same gate) during seven days and it 
turns and moves back to the gate from which the sun rises, and it completes its 
light. And (the moon) recedes from the sun and enters for eight days the sixth 
gate from which the sun rises.

7. And when the sun rises from the fourth gate (the moon) comes out (from 
the sixth gate) during seven days until it rises from the fifth (gate) and it returns 
again during seven days to the fourth gate and it completes its light and it recedes 
(from the sun) and it enters the first gate (during) eight days.

8. And again it returns (after) seven days to the fourth gate from which the sun 
rises.

9. Thus I saw their positions when the months begin at sunset. — It seems 
pointless to attempt to give an accurate translation of the confused nonsense 
which some scribes produced from some trivial arithmetical relations (for which 
cf. the notes on p. 19). Readers who wish to see some rendering of these scrambled 
verses may look up Charles Enoch pp. 149-161 or Knibb Enoch pp. 173-4.

10. We are dealing with five (“solar”) years of 364 days each.
11. Five lunar years fall short of five solar or sidereal years by (50 days, 

similarly three lunar years by) 30 days.
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12. In this way the length of the lunar years is not too long and not too short 
by a single day in all eternity in relation to the years of 364 days each.

13. Three years are 1092 days long, five years 1820 days, thus eight years 
1912 days.

14. to 16. Three lunar years are 1062 days long, thus 30 days shorter than 
three solar years. Similarly for five and eight years.

17. And the year is correctly completed in relation to its position within (the 
era of) the World and to the positions of the sun that rises and sets in its gates for 
30 days (each).

Notes to Chapter 74. The Lunar Year
This chapter contains a fragmentary description of the shift from gate to gate 
of sun and moon, based on a simple arithmetical scheme that is well known from 
computus treatises.17 The present text, however, covers only the discussion for 
the first month. The remaining tabulation is replaced by a badly bungled attempt 
to describe an octaeteris that would relate a lunar year to the Enoch-year. It is 
quite evident that these verses (10 to 17) are a later addition.

74.1 and 2. A reference to the angel Uriel supports our impression that this 
chapter was originally not connected with the preceding or following chapter. 
Also full moon is here associated with day 15, not with day 14, as in chapter 73 
(but cf. 78,6,7).

74.2 to 4. The text as it stands is not very clear. What was intended to be 
expressed may be formulated as follows: Enoch writes down the pattern for the 
gates traversed by sun and moon during the lunar year. In each month the moon 
is waxing and waning: first its light increases until 1/7 of the sun’s brightness is 
reached at full moon, visible in the east when the sun sets in the west; then the 
moon returns to darkness at conjunction which normally takes place in the same 
gate with the sun, though occasionally the moon may appear in an adjacent gate 
(as can actually be the case).

74.5. The gates 3 and 4 correspond to the equinoxes (cf. Fig. 1, p. 11).
74.6. We have here a general description of the relationship between the days 

of a lunar month and the gates : the moon comes out through one of the outermost 
gates during seven (or eight) days; there it turns and moves back to the gate from 
which the sun rises during this month, and its light becomes full (at sunset) ; 
then the moon recedes again from this gate.

At the end of this verse the words “enters for eight days the sixth gate” do not 
belong here and should be deleted.

74,7 to 9. The tabulation begins with month 1 at the vernal equinox. Con-
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TABLE III

Months 1 2 3 4 5 6 7 8 9 10 11 12 1 Months
Gates Gates

4 2 4
5 2 2 5
6 8 8 4 4 6
5 2 2 2 2 2 5
4 1 1 2 2 1 2 4
3 1 1 1 1 1 1 2 3
2 2 2 2 2 2 2 2 2 2
1 8 7 8 7 8 7 8 7 4 4 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 2 2 1 2 3
4 1 1 2 2 1 1 1 1 1 1 1 1 2 4
5 2 2 2 2 2 2 2 2 2 2 2 2 5
6 4 4 8 8 8 8 8 7 8 8 8 6
5 2 2 2 2 2 2 2 2 2 5
4 1 1 1 1 1 1 1 1 4
3 1 2 2 2 1 1 1 3
2 1 2 2 2 2 2 2
1 4 4 8 7 8 1
2 2 2 2 2
3 1 1 3
4 1 4

Days 30 29 30 29 30 29 30 29 30 29 30 29 30 Days

junction takes place in gate 4, then the moon’s rising and setting moves on to 
gate 6 for a period of seven days. Moving back18 to gate 4 we have full moon, 
followed by another delay (of 8 days) in gate 1. Thus the complete scheme for 
this month would look about as follows (cf. also Table III) :

gates: 45654321234
sun sun sun

during days: [2] [21 7 [2] [1] [1] [2] 8 [2] [1] [1] total: 29

The continuation of this tabulation is omitted just as in the preceding chapters. 
74,10 to 17. These verses constitute an abortive attempt to describe an 

octaeteris. The scribe had obviously only a very vague idea of the working of 
such a cycle, remembering only a separation of 8 years into two groups, one of 5
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years (with 2 intercalary full months — hence his 30 days in 74,11) and one of 3 
years (with 1 intercalary month) .18 However instead of operating with Alexandrian 
years he assumes Enoch years; and because this does not lead to any reasonable 
relationship, he ends up with some correct but irrelevant numerical identities, 
based on the comparison of 5 + 3 Enoch years with 5 + 3 lunar years:

5-364= 1820 days
3-364 = 1092 days
8-364 = 2912 days

5-354d = 1770 = 1820 - 50 days
3-354d = 1062 = 1092 - 30 days
8-354d = 2832 = 2912 - 80 days

I surmise that this whole group of verses is a late addition, written under the 
influence of some computus treatise, where a mix-up of Alexandrian and Enoch 
years is quite common.

Chapter 75
1. And their leaders, at the head of (each) thousand (stars), who are appointed 

(to rule) over the whole creation and over all stars (have to do also), with the 
four additional (days), without deviating from their positions, corresponding to 
the computus of the year. And they render service (also) on these four days 
which are not counted in the computus of the year.

2. And with respect to these (four days) people err since these luminaries do 
true service (also) in the (following) positions of the cosmos: once in the first 
gate and once in the third gate and once in the fourth gate and once in the sixth 
gate, so that the accuracy (of return) of the world is achieved after 364 (days) 
(with respect to the) positions of the cosmos.

3. Thus the signs, the times, the years, and the days were shown to me by the 
angel Uriel whom the eternal Lord of glory has appointed (to rule) over all the 
heavenly luminaries in heaven and in the world, such that they rule on the face 
of the sky and are seen from the earth and are made the guides of day and night, 
(namely) the sun and the moon and the stars and all the servants who return on 
all chariots of heaven.

4. Likewise Uriel showed me twelve openings, openings in the disc of the

17: Cf. Table III (p. 18), taken from EAC, p. 160. The positions of the numbers are not rigidly the 
same in all manuscripts; 7 and 8 as well as 1 and 2 can interchange places, as long as the proper 
totals 29 or 30 are preserved.

18 : The assignment of seven days to the return to gate 4 (instead of 2 days) is a scribal error, perhaps 
caused by a similar passage in verse 8.

19: Cf. EAC, p. 83IT.
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chariots of the sun in the sky, from which come forth over the earth the rays of 
the sun and its heat when they are opened at the proper time.

5. And (there are openings) for the winds and for the wind (that brings) dew, 
when the openings of heaven are opened at the boundaries (of the earth).

6. I have seen twelve gates in the heaven at the boundaries of the earth from 
which come out sun and moon and stars, and all the works of heaven from the 
east and from the west.

7. And (I saw) many window openings to the right and to the left and (each) 
one window emits heat at its time according to the gates from which the stars 
rise, as they are ordered, and in which they set according to their (the gates’) 
numbers.

8. And I saw chariots in the heaven travelling in the world above the gates, 
where the stars revolve which never set.

9. And one of these (circuits) is larger than all of them and it is one which 
circles the whole world.

Notes to Chapter 75. The Stars
75,1,2. The stars convey cosmic order to the calendar by their organization, 

which agrees exactly with the divisions of the Enoch year (hasâba ‘âmat), includ
ing the epagomenal days at the end of each season. Some people commit an error 
by ignoring these epagomenal days; this could refer to the lunar calendar of the 
Jews (which has no intercalary days), or to the Egyptian calendar (with five 
epagomenal days at the end of the year), or even to the schematic year of “Mul- 
Apin”, which contains only twelve 30-day months.

In fact, however, the epagomenal days are “not counted in the computus of 
the year” since it would disturb the linearity of the scheme for the variation of 
the length of daylight (cf. note to 72,6 to 32, p. 11). This admission of a contradic
tion between theory and practice is obviously due to a gloss that intruded into 
the text.

The divisions between the seasons are marked by the rising of the sun in one 
of the following gates: winter solstice in gate 1, the equinoxes in gates 3 and 4 
(autumnal and vernal equinox respectively, as is seen from the trend in the 
variation of the length of daylight — cf. 72,6 to 32, p. 11, Fig. 1), the summer 
solstice in gate 6. Cf. also 82,6 and 74,5. At these points the cosmos returns accu
rately to its previous position, 364 days earlier. Hence the (assumed) symmetry 
of the seasons of the solar year is taken as the ultimate basis for the calendar, and 
the stars reflect the same order.

75,3. 1 he angel Enel shows to Enoch all the things “about the signs and about 
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the times” (late’emert wala’azmän); this could refer to the role of the stars as 
indicators of the climatic changes from season to season (cf. above, 72,13 p. 12).

Sun, moon, and stars move “on the face of heaven” and thus are visible from 
the earth. The “servants20 who return (ya'awdu — not, in this case, “revolve”) on 
all chariots of heaven” are perhaps responsible for the return of the celestial 
bodies from their settings in the west to the eastern gates via the north (cf. 72,5; 
78,5).

75.4. Once more Uriel explains the purpose of the gates and of the chariots: 
“twelve openings in the disc of the chariot of the sun ... from which the rays of 
the sun ... and heat... come out”. This picture has no parallel in the rest of the 
text and I suspect some confusion with the gates traversed by the sun (cf. also 
verse 7) or with the twelve windows from which flames are ejected (72,7).

75.5. Probably an intrusion,21 in part duplicating verse 6.
75,6,7. Again 12 gates, east and west, but now not only for sun and moon but 

also for the stars. This makes little sense since the stars rise in all points of the 
eastern horizon. Then there are “windows” to the right and to the left (cf. 72,3,7) 
from which heat comes out — a moment before (in 75,4) the openings in the solar 
chariot performed this function — and also stars.

In verse 6 the “works of heaven” (gebräta samäy) probably means the mete
orological phenomena connected with the seasons. The “numbers” in verse 7 
probably refer to the numbering of the gates, thus guaranteeing the proper posi
tions of risings and settings.

75,8,9. There are chariots (obviously for stars) “above22 the gates” for those 
stars which never set, i.e. circumpolar stars. One of their circuits is the greatest, 
encircling the whole (always visible) world.23

Chapter 76
1. And I saw at the boundaries of the earth twelve gates, open to all winds, 

from where the winds come out and blow over the earth.
2. Three of them are open at the front of heaven (i.e. in the east) and three in

20: Dillmann’s “dienstbare Geschöpfe” (in his time an idiom reminiscent of household help) became 
“serving creatures” in Knibb’s translation.

21 : Cf. Dillmann, Henoch, p. 233/4.
22: Some manuscripts add here “and below them”, which makes no sense. Unfortunately Knibb 

accepted this version (following Dillmann but not Flemming).
23: Dillmann’s “durchkreutzt die ganze Welt” (hence Knibb’s “goes round through the whole 

world”) is senseless. Obviously Dillmann was not familiar with the concept “greatest always 
visible circle”. In his notes (p. 234) he even considers the “Morgenstern” or the Great Bear. In 
Greek astronomy this circle is known as the ‘arctic circle.’ 
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the west, and three at the right side of heaven, and three on the left side.
3. And the three first ones are in the direction of east, and (then) three are in 

the direction of north, and then those on the left, in the direction of south, and 
three in the west.

4. From four of them winds of blessing and prosperity come out, (but) through 
eight of them come winds (causing) calamities; when they are sent out they bring 
devastation over the whole earth and the water on it, and to all that inhabit it, 
to all that is in the water or on dry land.

5. And the first wind that comes out from these gates is called easterly. From 
the first gate in the direction of east, inclined toward south, devastation, drought, 
and heat and destruction come out.

6. And in the second gate, the middle one, (the wind) comes out straight; and 
from it rain and fruitfulness and prosperity and dew come out. And from the third 
gate, in the direction toward north, cold and drought come out.

7. And then the winds in the direction from south come out from three gates. 
First, from the first gate, that is inclined toward east, a hot wind comes out.

8. And from the middle gate, next to it, beautiful fragrance and dew and rain 
and prosperity and health come out.

9. And from the third gate, in the direction toward west, dew and rain and 
locusts and devastation come out.

10. And then the winds in the direction from north, (also) called bahr (Sea),... 
From the seventh gate, (inclined) toward east, dew and rain, locusts and devasta
tion come out.24

11. And from the middle gate, in a straight direction, health and rain and 
dew and prosperity come out. And from the third gate, (inclined) toward west, 
mist and hoar-frost and snow and rain and dew and locusts come out.

12. And then the fourth (group of) winds, in the direction toward west: from 
the first gate, in the direction of north, dew and rain and hoar-frost and cold and 
snow and frost come out.

13. And from the middle gate dew and rain, prosperity and blessing come out. 
And from the next gate, in the direction toward south, drought and devastation, 
burning and destruction come out from it.

14. And thus (the description of) the twelve gates in the four (quarters) of 
heaven is completed; and I have shown to you, my son Methusaleh, all their 
laws, (and all their) calamities and benefactions.

24: The text of this verse is corrupt but there is no doubt about the essential points, the order of the 
gates and the quality of the winds. A remark “inclined toward south” (and similarly “. . .toward 
north” in the next verse) makes no sense. The cause of all this trouble is probably the replace
ment of the eight-point rose of winds by twelve points, i.e. the duplication of the intermediate 
directions. Cf. the commentary (p. 24).
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Fig. 2. dew
rain

devastation dew
rain
prosperity
health
fragrance

Notes to Chapter 76. The Winds
The Ethiopian rose of winds consists of a sequence of twelve openings, again 
called “gates”, which encircle the whole horizon. The winds from the four cardinal 
directions are supposed to be beneficial, in contrast to the winds from the remain
ing eight gates that bring discomfort and devastation (cf. Fig. 2).25 Lists of this 
type are also found in many Ethiopie “computus” treatises. An abridged version is 
preserved in 34,2 to 36,1 of the Book of Enoch.

25: The accuracy of the 12-division of the horizon as shown in Fig. 2 should not be taken seriously. 
No numerical data are ever associated in our texts with these “gates”.
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One might think that long experience with climatic conditions would be 
condensed in such lists. In fact, however, we have here again only a schematic 
pattern, as far removed from empirical data as the arithmetical schemes for the 
length of daylight or the shadow tables. In all these cases scribal tradition has 
wiped out any connection with reality, if one ever existed.

The purely schematic character of qualities enumerated in the present section 
is easily recognizable in spite of some omissions or additions.26 This is quite 
obvious in the case of winds from the cardinal directions. All of them bring “dew, 
rain, prosperity” to which is added one more gift:

E : fruitfulness S and N : health W : blessing. 
Only the southern wind has a fifth quality (“fragrance”).

This list for the principal wind-directions strongly suggests that each wind 
should be associated with exactly four qualities. This is indeed confirmed for the 
destructive winds, listed here in the order of the text:

E 1 drought, heat, devastation, destruction
3 drought, cold

S 4 hot wind
6 dew, rain, locusts, devastation

N 7 dew, rain, locusts, devastation
9 dew, rain, hoar-frost, snow (mist, locusts)

W10 dew, rain, hoar-frost, snow (frost, cold)
12 drought, burning, devastation, destruction.

Excepting E3 and S4 and the rather senseless additions (shown in parentheses) 
in N 9 and W 10, we always have exactly four qualities mentioned. But this list 
reveals one more structural pattern. The third wind in one group has the same 
qualities as the first wind in the next: S6 = N 7, N9 = W10, W12 = E1, thus 
closing the cycle. Only E3 and S4 are exceptions, which is not surprising since 
both entries are obviously defective.

Summarizing these regularities we can now say that the twelve-wind arrange
ment contains four beneficial gates and only four qualities for the remaining eight 
gates. This suggests an historical evolution from an 8-point rose of winds to a 
12-point arrangement, the latter probably recommending itself by the formal 
similarity to the 6 + 6 “gates” for the risings and settings of sun and moon. Both 
eight-division and twelve-division are well known in hellenistic and Roman 
schemes, e.g., in geographical or architectural context.27

26: The order of the qualities listed in Fig. 2 for each individual wind can differ from the order l or 
rather disorder, which tends to obscure parallelisms) in the text.

27: Cf. ( with caution) RE 8A, 2 cols. 23511'. and 2378 for the 12-division and col. 2364 for 8-division 
[Böker|.
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Fig- 3-

76,1 to 13

Finally, a remark should be made about the order in the text of enumerating 
the gates for the winds. Since little consistency is found in computus texts in 
matters of orientation, it is not surprising to meet the same situation in the present 
treatise. Fig. 3 illustrates two instances from the “astronomical” book (Ch. 76 
and 77) and compares them to the short version in Ch. 34 to 36. In 76 and 77 the 
speaker faces east, the “front of heaven” (gasa samäy), thus north is “left” and 
south is “right”. In 34 to 36, however, the enumeration starts with north and 
proceeds counter-clockwise. In the astronomical sections the enumeration is 
either clockwise or E-S-N-W, as shown in Fig. 3, revealing one of the differences 
between the two versions to which 76 and 77, respectively, belong.

On the other hand the existence of an overall common background is visible 
in the fact that the only qualities associated with a wind-direction in 34 to 36 are 
“dew, rain, hoar-frost, snow (hail)”, ascribed in 34,2 to the north (in general) 
and in our chapter to N9 = W 10 (cf. above).

Concluding words to Methuselah (76,14) mark the end of the first version of 
the “astronomical” book, similar to 79,1 for the second version.

Verse 7 is corrupt, as is evident from the restriction to only one quality (heat 
= moq, in some MSS misread to mot = death). Several computus treatises have 
here nafas meweq zasemu netug (or natig28), “hot wind called netug/natig”. A 
similar gloss disturbed verse 10 by giving the north wind a special name, bahr = 
sea or ocean. With bähr is commonly associated as its counterpart the wind libä,
i.e.  Â.ÎLP, a southerly wind. Perhaps netug is a substitution for Xltp and is derived 
from VOTOg, the south wind.

In 77,2 netug is assigned to the west and derived from the meaning “diminish.” 
I suspect, however, that the transformation of this wind from the SE to the W is 
caused by this etymology, rather than explaining it. The shift from the eight-point 
rose of winds (still reflected in the restriction to only eight names — cf. EAC,

28: Cf. Littmann, Zeitschr. f. Assyriol. 16 (1902), p. 384. 
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p. 199, Fig. 4) to the twelve-point scheme (above Fig. 2) could only augment the 
confusion of directional terminologv.

In fact the name bähr, “north,” being unrelated to any great sea, may also 
be the result of a learned scribal interpretation of PÔpeaç. All these explanations 
are glosses, introduced by zasemu “which is called ...”, based on the same prin
ciple of assimilation of foreign words to Semitic roots, exemplified by the change 
of TCDV 0EGÜV to tentyon and explained by the scribes as meaning “at the beginning”.

Chapter 11
1. The first quarter is called east because it is the chief (quarter); and the 

second is called south because there the Most High descends {and there in partic
ular descends the one blessed in eternity}29.

2. And the quarter in the west is called netug (diminished) because all 
celestial luminaries decrease there and go down.

3. And the fourth quarter which is called north is divided into three parts. 
The first of them is the habitat for man, the second (contains) the oceans and 
gorges and forests and rivers, darkness and mist. The third part (contains) the 
Garden of Justice.

4. I saw seven high mountains, higher than all mountains on the earth, and 
hoar-frost comes from them. {And days and seasons and years traverse them.}29

5. I saw seven rivers on the earth, greater than all other rivers; one of them, 
coming from the west, sheds its waters into the Great Sea.

6. And two (of them) come from the north to the sea and shed their waters 
into the Erythrean Sea in the east.

7. And the remaining four (rivers) come from the northern side toward the 
sea, two to the Erythrean Sea, and two empty into the Great Sea — and (some) 
say: into the desert.

8. I (also) saw seven large islands in the sea and on land; two on land and five 
in the Great Sea.

Notes to Chapter 77. Mystical Geography
77,1 to 3. The cardinal directions are here enumerated in the order E-S-W-N, 

in contrast to 76 and 33 to 36 (cf. Fig. 3, p. 25). As in 76,2 we are facing east. For 
the wind netug, cf. the note to 76,7 (p. 25).

29: Probably a gloss.
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The description in verse 1 of the south as “where the Most High descends” is 
explained in an Amharic (unpublished) commentary as a reference to Mt. Sinai 
(communication by Prof. Ephraim Isaac). In verse 3 one might expect the human 
habitat to be located between ocean and paradise, not to the west of the ocean.

77,4 to 8. In verse 4 the traditional translation of yahalf30 as “schwinden dahin” 
(Dillmann, Flemming), “pass away and vanish” (Charles), makes no sense in 
the present context. I therefore suggest a translation “days and seasons and years 
traverse (them)”, meaning that the sun, the cause of days, seasons, and years, 
traverses the space above the mountains.

The tendency of this geography is too mythological to allow accurate identi
fications. It seems plausible, however, to take the Erythrean Sea for the Persian 
Gulf into which the Euphrates and Tigris empty their waters. The two islands 
“on land” (verse 8) could be land between rivers, as Dillmann suggested (p. 238), 
Mesopotamia and Meroe. Milik assumed31 a Greek version meaning “near (£FTl) 
land.”

Chapter 78
1. The names for the sun are as follows: the first ’Oryäris and the second 

Tomas.
2. The moon has four names: the first name is Asonyä, the second ’Eblâ, the 

third Benâsë, and the fourth ’Erâ'e.
3. These are the two great luminaries. Their roundness is as the roundness of 

the heavens and the amount of the roundness of the two is the same.
4. In the disc of the sun is combined seven times what is of light in the moon, 

and according to measure (light) is injected (from the sun into the moon) until 
the seventh part (of the light of the sun) has been transmitted.

5. And they set and they enter the gates in the west, and they return via the 
north to the eastern gates and (thus) come out (again) at the front of the sky 
(i.e. in the east).

6. And when the moon rises it becomes (first) visible on the sky when it contains 
the light of one-half of one-seventh part (of its total) and in fourteen (steps) it 
completes its full light.

7. And fifteen (parts of) light are put into it until in fifteen (days) its light is 
completed according to the character of the year and it makes fifteen parts while 
the moon is at its fourteenth part.

8. And when (the moon) is waning it decreases on the first day (to) fourteen

30: Some MSS (but not Tänä 9) have here wayahawer: “and proceed,” “go”, etc.
31 : Milik, Chronique d'Égypte 46 (1971), p. 333.
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parts of its light, on the second day it decreases to thirteen parts, on the third it 
decreases to twelve parts and on the fourth it decreases to eleven parts, and on the 
fifth it decreases to ten parts and on the sixth it decreases to nine parts, and on 
the seventh it decreases to eight parts, and on the eighth it decreases to seven 
parts, and on the ninth it decreases to six parts, and on the tenth it decreases to 
five parts, and on the eleventh it decreases to four parts, and on the twelfth it 
decreases to three parts, and on the thirteenth it decreases to two (parts), and on 
the fourteenth it decreases to half of one-seventh of its total light, and on the fif
teenth is consumed what remains of the total.

9. And in certain months the moon (is visible) for each one of twenty-nine days 
and at times for twenty-eight days.

10. Then Uriel showed me another rule how light is put into the moon and 
where it is put into it from the sun.

11. The whole time in which (the illumination of) the moon progresses, light 
is transmitted to it, facing the sun, until the fourteenth day when its light is 
complete. And when the (lunar disc) is completely aflame (then) its light in the 
sky is complete.

12. On the first day it is called New Moon because on the day light appears 
on it (for the first time).

13. And (the light) becomes exactly complete on the day when the sun sets 
in the west and when in the east (the moon) rises at (the beginning of) night. 
And the moon is illuminated all night until the sun rises opposite it and the moon 
is seen opposite the sun.

14. And where the light for the moon entered it, there again it wanes until 
all its light is consumed and the days of the (lunar) month are used up and the 
moon’s disc remains empty without light.

15. And in three months their duration amounts to thirty days and in three 
months it amounts to twenty-nine days each, in which it makes its recession, in the 
first time and in the first gate, in 177 days.

16. And in the time of its waxing it becomes visible in three months for thirty 
days each, and it becomes visible in three (other) months for twenty-nine days 
each.

17. At night it is visible for twenty(nine) (days) each like a man and at day
time (it is) like the sky because without its light there is nothing else in it.

79,1. And now, my son, I have shown you everything and completed is (the 
story about) the law of all the stars in the sky.

Notes to Chapter 78. Lunar Phases
Much in this chapter duplicates the preceding versions.
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78.1. A two-division of the year in reflected in the attribution of two names 
to the sun. For the etymology, cf. Charles, Enoch, p. 166, notes; also Milik 
Chronique d’Égypte 46 [1971] p. 338, commentary to line 7.

78.2. Corresponding to its four major phases the moon is given four names; 
cf. Charles, Enoch, p. 166/7, notes.

78,3 to 5. Equality of the apparent diameters of sun and moon (cf. 72,37) and 
brightness 7:1 (cf. 72,37 and 73,3). Setting of the luminaries in the western gates 
and return via the north (cf. 72,5 and 75,3) to the east.

78,4. The transfer of light “according to measure” (here and in 73,2) probably 
means the steady increase of illumination, proportional to time.

78,6 to 9. Verses 6 and 7 deal in a general fashion with the waxing moon, 
allowing either day 14 or day 15 as full moon date. What the character of the 
“year” has to do in this context (verse 7) I do not understand. Error for “month” 
(hollow/full) ?

Verse 8 concerns the waning moon, describing the day-by-day decrease of the 
moon’s illuminated area in terms of “parts”, from 14 on the first day to invisibility 
on the 15th day. For a fragment of a Greek version cf. Milik, Chronique d'Égypte 
46 (1971), p. 339.

Verse 9 offers the possibility that a “month” may contain 29 or 28 days (of 
visibility), being either full or hollow.

78,10 to 14. Once more a general description of the lunar phases, introduced 
by Uriel. In verse 11 one should not say that the moon is “opposite” the sun 
during the whole time of waxing in order to avoid misinterpretation as “oppo
sition” (which is the proper term in verse 13). Prof. E. Isaac suggests, therefore, 
translating baqedma dahay as “facing the sun”.

Verse 14 states correctly darkness of the waning moon begins on the same side 
(the western rim) on which the illumination of the waxing moon begins.

78,15,16. The lunar year is schematically divided into two halves, each con
taining three full and three hollow months, thus a total of 177 days. Apparently 
in analogy to the two halves of a lunar month these two halves of the lunar year 
are denoted as “waning” and “waxing” (why in that order?). Cf. also 79,3,4.

78,17. During 2[9] nights,32 when the moon is visible, “it looks like a man”. 
At daytime, however, the moon is invisible, apparently because it has no cor- 
porality, being only a receptacle of the solar light. Cf. also the Aramaic version.33

32 : The reading 20 in the MSS is obviously a scribal error, unfortunately not emended by Dillmann 
and thus retained ever since. The Aramaic version has no number.

33: Milik, Enoch, p. 295/5. Cf. also Claire Préaux, La lune dans la pensée grecque, Ch. III. (Aca
démie Royale de Belgique, Mémoires de la Classe des Lettres, 2e sér. t. 61, fasc. 4 [1973]).

79,1. Final words of Methuselah, similar to the end of the first version (76,14).
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Chapter 79
2. And he (Uriel) showed me every one of their rules for every day and for 

every season with its power, and for every year, and about the places of exit (i.e. 
the gates), and concerning the rules for every month and for every week;

3. and the decrement of the moon that accumulated in the sixth gate, because 
in the sixth gate its (the moon’s)light is completed. The beginning of the decre
ment

4. that accumulates (is) in the first gate (and it is counted) at its (proper) 
time, (i.e.) when 177 days are completed — or, after the reckoning with weeks, 
25 (weeks) and two days.

5. And how it (the moon) falls behind in relation to the sun — or, after the 
reckoning with the stars, exactly five days in one single (period of) time, (i.e. 
half a lunar year) and when this position which you see has been traversed (by 
the stars).

6. Such is the appearance and the picture for each luminary shown to me by 
the great angel Uriel who is their leader.

80,1. And in these days the angel Uriel spoke to me and said to me: see, I 
have shown to you, O Enoch, everything and I have revealed to you everything 
to be seen about the sun, the moon, and everything about those who guide the 
stars in heaven and all who turn (back) their works, (and about) their times, and 
their places of exit (i.e. the gates).

Notes to Chapter 79. The Lunar Year
79,2. “He showed me” refers, of course, to the angel Uriel, not to Methuselah, 

who was addressed in 79,1. Cf. also 79,6-80,1.
The “power” of each season (lit. “time”) refers to the stars which during 

stretches of 91 days represent the seasons, as we are told in 82,15 to 20.
79,3,4. The verses 3 to 5 assume a two-division of the lunar year, similar to

78,15,16. Details remain obscure since the text is obviously corrupt.
In the present context “sixth gate” and “first gate” do not refer to the 

numbering of the gates from south to north but probably mean here “a sixth 
gate” and “a first gate”, thus describing an interval of six gates traversed by the 
sun, i.e. the time of half a lunar year (cf. 78,15).

During this time the lunar months develop a “decrement” (tähsäsita) with 
respect to the calendar months. How the changing illumination of the moon got 
involved with this problem I do not know. Actually this whole chapter is only 
an expanded (and therefore more obscure) version of 78,15.

79,5. One half lunar year is now compared to one half of the Enoch-year. The 
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latter is considered to be a “sidereal” year. Indeed, “the law of stars” is identical 
with the order of the Enoch-year (cf. 75,1,2 and 82). The difference in question 
is, of course, 5 days; cf. also 74,10 to 17.

The “position traversed” (by the stars) marks the completion of the two 
seasons; cf. 82,9 and 10.

79,6; 80,1. Concluding speech of the angel Uriel, referring to his teaching 
about sun, moon, and stars (cf. also 82,7,8), i.e. the topics which constitute the 
core of the “astronomical” Book of Enoch. The remaining topics (including the 
winds?) appear to be later accretions.

The “turning back” probably refers to the return of the celestial bodies to the 
east after their setting; cf. for parallels 75,3 (p. 19).

80,2 to 82,3 is an intrusion of non-astronomical material: apocalyptic and 
again concluding words to Methuselah.

Chapter 82
4. Blessed are all the righteous ones, blessed are those who walk in the path 

of righteousness and do not err, like the sinners, in counting all their days in which 
the sun travels in the sky, entering in and coming out from the doors for thirty 
days, together with the leaders of the thousands of the orders of the stars, together 
with the four (days) that are added in order to separate the intervals (of the year, 
i.e.) the four intervals, the parts of the year, which lead them and with which 
they make their entry on four days.

5. There are people who err concerning them (the epagomenal days) by not 
counting them in the reckoning of the year, for such people err and do not know 
them correctly,

6. although they belong to the computus of the year and are truly recorded 
forever: one in the first gate and one in the third and one in the fourth and one 
in the sixth (gate) and the year is completed in 364 days.

7. For (this) account is true and the computation exact as (here) recorded, 
since (everything) concerning the luminaries, the months and the festivals and 
the (years) and the days Uriel has shown to me and revealed it as he was ordered 
by the Lord of the whole creation of the world and about the host of heaven.

8. And he has power in heaven over night and day, so as to make light visible 
to men, sun and moon and stars and all the powers of heaven which revolve in 
their circuits.

9. And this is the law of the stars which set in their (proper) places, and at 
their times and their festivals and at their months.
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10. And these are the names of their leaders, who watch them that they enter 
at their times, who guide them in their positions and their order, in their times 
and their months and their powers and their positions.

11. Their four leaders who separate the four parts of the year enter first; after 
them (enter) the twelve leaders of the orders who separate the months; and the 
360 heads over thousands (of stars) are the ones who separate the days; and for 
the four epagomenal days those are the leaders who separate the four parts of 
the year.

12. And concerning these heads over thousands: always one (of the four main 
leaders) is placed at the position between the leaders (of thousands) and their 
followers; but these (single) leaders separate (the seasons).

13. And these are the names of the leaders who separate the four fixed parts 
of the year: Melk’ël, Hel’ememêlëk, Mel’ëyal, Nârël.

14. And the names of those whom they lead are Adnâr’ël, ’Iyâsusa’ël, and 
’Iyelumë’ël. These three follow the leaders of the orders (of thousands); (then 
again) one (of the four main leaders) follows the three leaders of the orders which 
(in turn) follows after those (main) leaders (who are placed) at the positions 
which separate the four seasons of the year.

15. At the beginning of the year Melk’ël rises first and rules — to whom is 
(also) given the name “Southern Sun”. And the total of days during which he 
exercises his power is 91 days.

16. And these are the signs of the days which are to be seen on earth in the 
days of his period of rulership: sweat, heat, and dryness (?). And all trees bear 
fruit, and leaves appear on all trees (and there will be) good harvest, and rose
flowers and all the flowers which blossom in the fields; but the trees of winter are 
withered.

17. And these are the names of the leaders who are the subordinates: Berke’ël, 
Zëlebsâ’ël, and another one who is added, (as) head of thousands, called Hëloyâsëf; 
and completed are the days of rulership (over this season) with this one.

18. And the second leader after him is Hel’ememëlëk whom they (also) call 
“Luminous Sun”; and the total of the days of his light are 91 days.

19. And these are the signs of these days on earth: heat and drought; and the 
trees bring their fruit to ripeness and maturity and make their fruit dry; and the 
sheep mate and become pregnant; and men gather all the fruits of the earth, 
and everything which is in the fields, and the vats of wine. (And this) will take 
place in the days of his rulership.

20. And these are the names, and the orders and the subordinates, the leaders 
of thousands: Gëda’ëyâl, Kë’ël, and Hë’ël and the name of one who is added to 
them as a head of thousands called Asfa’ël, and completed are the days of ruler
ship with this one.
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Notes to Chapter 82. The Hierarchy of the Stars
As before, e.g. in 75,1 and 2, the arrangement of the stars follows exactly the 
pattern of the Enoch-year.

82,4,5. There are “leaders of thousand (stars)”, responsible for each month 
of 30 days and four leaders of higher rank who are associated with the four 
epagomenal days. Again people are mentioned who do not deal correctly with 
these days (cf. 75,2).

In verse 4 ’anqas “door” (also “division,” “chapter” and “cycle”) probably 
means here not the gates but the divisions between the seasons.

82,6. The epagomenal days are associated with gates 1, 3, 4, 6, i.e. with the 
solstices and equinoxes (cf. 75,2).

82,7,8. All this is handed down on the authority of the angel Uriel, who is 
set over the luminaries, sun, moon, and stars. Cf. the similar epilogue in 80,1.

What follows in the remaining verses of Chapter 82 is obviously an addition 
taken from a different source.34 It contains one of those lists of freely invented 
names which enhance the authority of cosmologie revelations. The text as we 
have it is slightly in disorder, which is not surprising for a meaningless list of 
(angel-) names. Nevertheless it seems to be clear that the original structure was 
simple enough: first are listed the leaders of the four seasons, then the twelve 
subordinate commanders for the single months. The text is incomplete only in 
the case of the last season, perhaps owing to an early mutilation of the manuscript.

82,9,10. Introductory remarks to the following (but not “headings” as Dill- 
mann, p. 249, says).

82,11. Different ranks are given to the “leaders” (marähyän) of the stars. 
There are four leaders of the seasons, associated with the four epagomenal days, 
each one on duty for 91 days; then follow four groups of three leaders of the “orders” 
(éer'atât) corresponding to the twelve months of 30 days each; finally, the “leaders 
of the thousand (stars)”, concerned with the 360 single days. These leaders are 
presumably angels. Dillmann expressed their ranks by hellenistic titles: 4 toparchs, 
12 taxiarchs, 360 chiliarchs.35

82,12,13. The names of the leaders of the seasons, represented by the epagom
enal days, are :

Melkiel Helemmemelek Meleyal Narel
82,14,15. The first season, spring, is ruled over by Melkiel. The subordinate 

leaders are:
Adnarel Iyasusael Iylumiel.

34: Also Dillmann, Henoch, p. 239 (and p. 248) assumes the “Unächtheit” of 82,9 to 20. 
35: Dillmann, p. 52, notes; p. 248, n. 1.
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It is the function of the fixed stars to signal by their (heliacal) rising the beginnings 
of months and seasons. The cyclic order of these phenomena is expressed in the 
text by indicating that the season-stars can be considered either as preceding or 
following the three subordinate stars which initiate the three months of each 
season. The second half of verse 14 seems to express in a clumsy fashion the fact 
that it is immaterial in a circular sequence of stars to distinguish between leading 
and following positions.

82.15 and 18. The names “Southern Sun” and “Luminous Sun”, associated 
with seasonal leaders, do not fit very well, respectively, spring and summer, where 
they are mentioned.

82,16,19. The “signs” are here clearly referring to climatic and agricultural 
characteristics (cf. 72,13).

82,17,18. The second season has the following subordinate rulers: 
Berkeel Zelebsael Heloyasef.

82,20. The subordinate rulers of the third season are:
Gedaeyal Keel Heel.

Only the name Asfael is preserved for the last season.36 Here the text ends 
abruptly.

Although the text of this verse, as we have it, is in disorder, the preserved 
words nevertheless suffice to show that the original version was an exact parallel 
to 82,17 : the names of two subordinate leaders are given, followed by a third one 
who brings the three months of the season to a conclusion.

Additional Notes on the Aramaic Fragments
by Matthew Black

72.1# With seltänomu cf. ] 82.10, Enastrb28.2, Milik, Enoch, p. 295
(jin^t-m]?).

72.27 Milik, Enoch, p. 282, equates ‘ar’estihu with ‘its sections’ at
Enastrbiii.2.

72.4-8 This linear scheme is found in the Aramaic fragments (Milik, Enoch, 
p. 278 f. ; EAC, p. 195 f.). That the Ethiopie texts go back ultimately to this 
Aramaic Enoch is amply demonstrated by the surviving fragment of En 78.6—8, 
9-12 etc. (Milik, Enoch, p. 292 f.). The terminology of these texts has given rise

36: Charles, Enoch, p. 178, n. 20, considers the name Asfael as “merely an inversion” of Heloyaseph 
(of the second season). There is, of course, no reason visible for such a reduction of the number 
of leaders (not to mention the inept execution of the “inversion”).
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to a certain amount of confusion in the Ethiopie, e.g. the fractions 1/2 of 1/7th 
( 1/ 14th) or 6/7ths and 1/2 ( 13/ 14ths) (see note on 73.6). For the general pattern 
of the Aramaic texts, consult Milik, Enoch, p. 274f. and EAC, p. 196, n. 6.37

73.6 The correct translation of 1/14 is found at 78.6, manfaqa säb'eta’eda, lit.
‘half of a seventh part’: so Enastrb6.8, Tn (Milik, Enoch, p. 284).

76.3- 10 are preserved (fragmentarily) at Enastrc l.ii.l-10(Milik, Enoch, p. 
284 f.).

76.3 Enastrcl.ii.l (Milik, Enoch, p. 285) has ‘and the three (gates) which are 
after them are on the north (lit. the left) kC’piDtf jrrinn n nn*?rp)
This corresponds to the clause in Ethiopie, ‘and then those on the left’. Charles 
bracketed this clause (Charles, Enoch, p. 163) as ‘nonsense’. It is undoubtedly 
original: the preceding clause ‘and (then) three are in the direction of the north’ 
seems to be a doublet. In this verse the Ethiopie text follows the order ENSW 
which does not correspond to the order ESNW in verses 5-14;38 for a discussion 
of this problem and possible explanations, see Charles Enoch, p. 163, Martin 
Le Livre d’Hénoch, p. 176, Knibb, Enoch, p. 176. (Milik claims (p. 286) that it 
is the order [ S] N [W] which is found in the Aramaic, but there is no evidence 
in the fragment for this — only the north is mentioned.)

76.4- 5 Cf. Enastrc 1 .ii.2, Milik, Enoch, p. 285. The Aramaic has a fuller form 
of text. For these destructive winds, see above, p. 23.

76.6 relates to the favourable East wind (above, p. 23). Enastrcl. ii.5: ‘... by 
the second gate comes forth the east wind, the chief (of winds) n IT

D’Tp ’, Milik reconstructs (p. 285) CPTi? n*!T, ‘the
east-east wind’, comparing line 6 7I21T1 D’T/? I11T, ‘the east-north wind’ 
which comes from the third eastern gate. But ‘east-east’ is a meaningless tautology. 
At 77.1 Eth. the wind is called ‘east’ because it is qadämäwi, ‘chief, first’: here 
Enastrcl.ii,15 reads and the line is restored by Milik: ‘[And they call
the east (quarter) East] because it is the first (JPOTp X 1Î1 ’T3) (Eth. has 
translated ‘quarter’ as ‘wind’: see below, note on 76.13, 77.1.) This east wind is 
said to be ‘in the middle’, i.e. between the two destructive winds of gates 1 and 3, 
and according to Eth. it ‘comes forth in a straight line’, i.e. blowing due E —W,

37: The expression rendered in EAC ‘keeping (in darkness) a remainder of 2/7 (= 4/14)’ is a 
curious one in the original. It occurs twice in this passage Enastrb7.iii.4 and 8: thus line 4 
. . . I’PBI pin pV’TT P 1X273 0^271 . . . pE 2 rendered by 
Milik ‘it (the moon) emerges ... and it keeps during the rest of this day two sevenths (parts of 
its light) and a half. Milik explains ô'PïZI (p. 282), ‘lit. ‘and it reigns (over such and such a 
fraction of its light)’. May we not rather have here the lost root übï? behind Heb. 0*77 ‘a 
shield’, and meaning ‘to cover’ velare? (cf. Th WNT s.v. ÉÇouoia Bd. II., p. 570 (Foerster).) 
We should then translate: ‘it emerges and covers during the rest of this day 5/14’.

38: See EAC p. 198 for Ethiopie directional terminology.
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unlike the two other east winds which are deflected to the south or the north. 
(See Flemming-Radermacher, p. 99.)

76.13 Enastrc 1 .ii. 14, Enastrb23.1 (cf. Milik, Enoch, pp. 228, 289, 290)
pirn [ . . . ] nion devastation, death, [heat?] and de
struction’. Cf. 76.5 where several manuscripts read mot (‘death’) for moq (‘heat’); 
mot may have fallen out of Eth. by haplography. (The reading Fl*]O seems 
reasonably certain.)

76.14 Enastrc 1 .ii. 14, Enastrb23.2 ‘And (the description of) the twelve gates 
of the four quarters of heaven (X ’ 077 ’ n *1*1) is completed; their full number 
and explanation I have shown to you, my son Methuselah’. Eth.’s ‘four gates’ 
(hew äh ewe) is a scribal error for nafäsät = D Ifl 1*1 ‘quarters’ (Flemming 
Henoch, p. 103). (Milik reads } *1077*1 S *1 ] lilrfPiP as a hendiadys ‘their 
complete explanation’.)

77.1 Cf. Enastrcl.ii. 13-20, Enastrb23, Milik, Enoch, p. 287 f. The first quarter 
is called east. That nafäs translated ‘region, quarter’ is clear from Enastrb23.4 
‘And the great quarter ( XJ1 fl 1*1) (they call) the west quarter XH57Q 111*1 , , . 
because it is the chief (quarter). Enastrc 1 ,ii. 14 (‘The east they call East) because it 
is the chief (quarter) (X’Olj? X *171 ’ll). For the word-play on Dip, 
Dillmann, Henoch, p. 236: X’Olp can mean both ‘first, chie£ or ‘in front’ — 
The East is ‘in front’, the Most High descends. Enastrb23.2 1X1 pn1? 'p’-n 
m ‘because there the Great One dwells’. The Aram, assumes an etymology 
from Heb. DI *11; the translator reads the text as X1*l TV KClTClßCHV£l Ô 
uqjlOTOg. Cf. Dillmann, Henoch, p. 236, Knibb, Enoch, p. 179.

77.2 because all celestial luminaries decrease there ... Enastrb23.5 is defective in 
this clause: I suggest with Eth. X ’ 027 ’[“iina non ■[nn‘7] »tj”. 
The reading p X D ‘(celestial) bodies’ is corrected three times at Enastrc 1 .ii. 17,18: 
the first correction p2XD gives the true reading (the word occurs again at 
line 17 X ’ 027 ’2X0 [ (written jxxn )] : ‘(celestial) bodies setting and bodies 
entering’. (Milik reads interrogative p (X)2O ‘whence’ but translates ‘there’.) 
The whole verse then reads: ‘And the West is called the great quarter, because 
there the heavenly luminaries wane, (celestial) bodies setting and (celestial) 
bodies entering, and all the stars; and on this account it is called West (lit. 
‘setting’).’ Presumably ‘great’ because it has to accommodate all the heavenly 
host after they set.

77.3a Enastrc 1 .ii. 18 —19, Enastrb23.6—9 has a much longer text, relatively fully 
preserved; for the text see Milik, Enoch, pp. 288, 289. I read Enastrcl .ii.18 
prrrr paxo ’io ‘because (celestial) bodies arise’ as above at Enastrb23.7. 
‘And the north (they call) North because in it all the celestial bodies (lit. vessels) 

39: Syr Ä 1 •> en co P Sm col 13411 luna decrescens.
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hide and assemble and revolve and proceed to the East of heaven. And the east 
(they call) East because from there the celestial bodies (X’TXP 
arise; and also (they call it) mizrah because (there celestial) bodies arise | ’THT? 
pnri) , moons ... to appear ...’ (For Milik’s conjectural supplement, see p. 288.) 

77.3b For the second part of the verse, cf. Enastrc 1 .ii. 19, Enastrb23.9; on 
the analogy of v.4 perhaps supplement [ni^s n'pn n’Tni] ‘And I saw 
three divisions of the earth, one of them for the traffic of men, and one of them for 
[all seas and rivers], and one of them for the deserts [and the .. .] and the Paradise 
of Justice.’ Milik supplies (after ‘for the deserts ’) 4 and for the Seven
(ultra-terrestrial regions)’, a fascinating but unsupported guess (p. 291).

77.4 A few letters only are preserved in the first part of the verse (Milik, p. 
289), but prv’py nn[m] is certain • and snow comes down upon
them’.

78.1 Milik’s observation (Chronique d’Egypte, 46 (1971), p. 338) that the 
two names for the sun correspond to the two seasons of the year seems correct, 
but the order is not the ‘dry’ season followed by the ‘wet’ season, but probably the 
other way round (cf. Charles, Enoch, p. 167), winter and spring (early summer), 
the ‘wet’ season’ Oryäres 0"in followed by summer, the ‘dry’ or ‘hot’
season (Tomas 71 OF! ?). Asonyä (Asenyä) for the moon may be connected with 
Accadian sin, sen, ‘moon’ (cf. sivan, month of the moon-god, Sinai, etc.). ’Eblä 
can only be nn1? ‘the white one’, ’Era’ 11*1 ’ ‘moon’, and Benase is probably 
corrupt in the first syllable (Dillmann) unless it stands for \73X ]□, ‘man’ (cf.
78.17).

78.6-8 cf. Enastrc 1 .iii.3-9 (Milik, Enoch, p. 292). In line 1 (corre
sponding to basa may) is barely identifiable in the photograph and nothing else is

[niw is all that can be recovered with certainty, but the Aram, text is evidently 
fuller than Eth.: the meaning seems to be that ‘they (the added fractions) fill up 
(the light) each day and complete in it (the 14th day) all its light’. The last few 
words ca£ be confidently restored from verse 7 where Enastrc 1 .iii.5 has preserved 
a text: 71*11713 713 *W D^OTl 01’ TV‘Until the 15th day
and they (the fractions) complete in it its light.’

78.7 cf. Enastrcl.iii.6, read and translated by Milik: 91’PEH X’m* “?3l1 
‘And it (the moon) accomplishes (lit. guides) (its) phases by halves of 

sevenths.’ The reading *13 *1 is certain (cf. Knibb) : the word occurs again at
78.5 as a noun (Enastrb26.3, Milik, p. 294) ; cf. Tg X“13*I Jud. 5.21. If we assume 
that fn 9 ‘month’ can mean ‘phase of the moon’ (Milik), an alternative construc
tion would be to take in as a noun and render ‘and the course of the moon’s 
phases is by halves of sevenths’.
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78.8 Enastrcl.iii.8 reads *in JO Tn Xbl’il]
‘and on the fourth day (the moon decreases) by one part from eleven parts’, i.e. 
to ten parts (not as Milik ‘eleven parts’). This firm text enables us to restore the 
earlier sequence which should be correctly rendered: ‘And on the first day (the 
moon decreases) by one part from fourteen parts’, i.e. to thirteen parts (not as 
Milik fourteen parts).

78.10 Then Uriel showed me another rule. Milik equates the fragment Enastrb25.1-4 
with this verse but the identification is doubtful. All that is now visible in the photo
graph are the words : i . ] ’TH*? JVTnX J*inX J13tf[n. ..].
‘Another calculation I was shown with regard to it (the moon?).’ J TllZZn ‘cal
culation’ is certainly right (cf. 79.1 Enastrb26.7) and rPTIlK is to be construed 
as an inner passive of the Ophal (cf. Milik, Enoch, p. 202). (Milik supplements 
[‘And Uriel demonstrated to me] a further calculation by having shown it unto 
me that .. .’, but this is forcing the syntax to support the identification.) In line 1 
X’3U7 ‘years’ is visible but there is nothing corresponding in Eth. There are 
several other passages where similar words are found, e.g. 73.1 ‘...I saw another 
law’, 74.1 T saw another course, a law ...’. (The verb is probably auxiliary, 
but the main verb is lost.)

78.17 At night it is visible ... nothing else in it. This verse is fragmentarily preserved 
at Enastrb26.4-6 but in a longer form of text. (Enastrb26.3 is reproduced in Eth. 
at 79.3, but Enastrb26.4-6 go together and belong to the text behind 78.17 Eth.) 
Enastrc26.4-5 reads: FIT ** b*T ’’in D1QTD Î13 [. , ,]
pax jt xnn ’on Jj[xp jb x^n v]xn ... in it (?) 
it resembles the likeness of a mirror when the light shines on it. On some nights 
(nxp jo) this appearance resembles the image of a man’. There is a play on 
the noun , X ’Til ‘mirror’ (Heb. DXTb X^TTI Tg. Ex. 38.8) and X TTfl 
‘vision, appearance, (Milik’s ‘like an image of vision’ makes little sense). I take 
T’XH as a Haphel of *1 *1X (cf. the use of XD*1 IX for ‘moon-light’; *1X Hoftijzer, 
p. 23). Has this line 4 fallen out of the original behind Eth. by h m t or a similar 
form of scribal error (note the common phraseology of lines 4 and 5). MX p J b — 
partim (Dan 2.42) must refer in this context to the appearance of‘the man in the 
moon’ for only a part of the full times of the moon’s waxing or waning. There is 
nothing in the Aram, text about ‘twenty (nine) days’, which could have arisen 
in the Eth. text from the Greek KCITEIKC1ÇEI = *b*l read as KC1T’ ELKOOl, 

baba'esra. All that remains of the rest of the verse in Aram, is jo xbb’m 
^rmn’pn n[ . . . ]. The second phrase is read as a repeated JlXp Jb 
by Milik. The last phrase looks like ’ FllTin^n miDl ‘light by itself ; per
haps the original read ‘and in the day-time, for part (of the timej, it resembles 
the sky for there is no light in it by itself: DlbTO ’bT DXp ] J Q Xbb^ll 
’HTTin’pa nfnnna m mb ’*r x’w . The meaning would be that 
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the moon ‘resembles the sky’ in the sense that its now invisible disc is blue ‘like the 
sky’. (There is no evidence to support Milik’s ‘like the sun in the sky’.)

79.1 Enastrb26.6 F13X XTIlft J5O1 ‘And now I am showing
to you, my son ...’

79.3 4 Fragments of the original of these verses have been preserved at 
Enastrb26.2-4: HI K’D’D7 K5HD3‘in the sixth gate ,..’]’ftl[’1. •] 
KWJff 121 ]ft Torw*l I "IM14 (twenty five weeks) and two days. 5 And it 
(the moon) falls behind the course of the sun . ..’ (For the rest of this fragment 
see on 78.17.)

82.9 Fragments of verses 9—13 are preserved at Enastrb28.1-5 (Milik, Enoch, 
p. 295). It is pointless to try to reconstruct an original text on the basis of the few 
words and phrases preserved: the most we can do is to identify the terminology 
and its Eth. equivalent. Thus lines 1 and 2 preserve five nouns two of which occur 
in Eth. verse 9, two in verse JO: • • • J ID
primos ’?□'? pnaöbfimj. The first two words correspond to Eth’s 
‘their festivals and at their months’. (There is no astronomical justification for 
taking J 9 “I$7ft as ‘signs of the Zodiac’, Milik, p. 295,187f.) Eth.’s ‘months’ should 
be understood, in the light of Aram. limrin as ‘their new moons’, closely as
sociated with ‘festivals’. The last term ] lil probably corresponds to 
ser'atatihomu of verses 10, 11 in the sense of TQYPClTa‘order, classes’, especially 
in a military sense ‘battalions’. See Milik, Enoch, p. 147, Knibb, Enoch, p. 188f. 
The two terms in line 10 correspond to seltänätihomu ‘their powers’ and 
either to meqwämätihomu or makänätihomu, ‘their positions’ or ‘their 
places’. See Milik, p. 187 for IT1ÜO. At lines 3 and 4 the fragment has 
] 1 ][ ... and [ . . . ]»□ psn[£>n] corresponding
to Eth. marähyan zaser'atät ‘leaders of the orders’(
probably translated first as TCI^ICIPXCU ) ; the remaining fragment corresponds to 
’ella yelëleyewomu la’a wer ah,‘who separate the months’]’37*1 [ E)ft ’*1]) 
(X’fn’ I 91 Line 5 corresponds to verse 13 DHftl? ‘and these are
the names ...’

82.16T. A description of spring, summer and winter occurs at Enastrdl.l 
(Milik, Enoch, p. 296) with expressions recalling En 2.1-5 and En 3 (Ena 1 .ii.3ff.) 
and En 82.16ff. Milik detects in this piece the missing original of the description 
of autumn and winter which should have followed 82.20. Certainly some original 
Aramaic description of the seasons, preserved more fully at Ena 1 ,ii.3ff., has 
served to provide the foundation of the poetic account of the seasons at En 2 and 3. 
Endi [ . , . jnijrm Ksnx 'jy |’Drift imi[ . . . ] 
line 2 ‘... and rain descend upon the earth, and plants (?) ...’ Cf. Eth. En 2.3 
‘... and clouds and dew and rain rest upon it (the earth)’. (Has ] ’Drift , Aph. 
ptc. nn3 been read as J ’ fP 2 ft Aph. ptc. Fl 12 = ’a'raf?)
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[ . . .' X?’ K5HK . . . ] line 3
‘... the herbage of the earth sprouts, comes forth and blossoms.’ Cf. 82.16.

pr’nnn] xia’p’x mn kwi iines4-640
/'x’nynx'?] mn x*? ’n pa’p’x [nsmx p xnn 
papno |[in?]’7y [ . . . n’pünynx’?

‘But winter comes and the leaves of all the trees [wither and fall except for four] teen 
trees from whom it is unseemly [to be stripped bare .. .] their leaves abide ... 
Cf. Eth. En 3 ‘... the trees appear withered ... with the exception of fourteen 
trees which are not stripped bare (but) which abide with the old (foliage) till the 
new appears after two or three years.’ (cf. Enal.ii. 5-6)

40: Restored from En 2.2, En 3.
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arctic circle
’are’aya
’are’est
Asfael
Babylonian astronomy 
bähr (= ßopeaq?)
Biblical influences 
brightness of sun and moon 
calendar
chambers (mazägebta) 
chariots
Charles 
circumpolar stars 
classes
computus texts 
conjunction (of sun and moon) 
constellations
Dillmann 
epagomenal days
érnoripiaiveiv 
equinoxes
Erythrean Sea
full moon (day 14 or 15) 
gates
gates (for sun and moon) 
gates (for winds) 
geography
indicative for climatic conditions
Isaiah 30,26 
length of daylight 
linear zigzag function
Åitp
lunar months 
lunar year 
mana (weight) 
mazägebt 
meteorological conditions (“signs”) 
Methuselah
moon, illumination, phases 
Mul-Apin
netug (= vOTOg?) 
octaeteris
orbits 
orientation 
parts (of day) 
planets
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power (éeltân)
reheqa
returns from west to east 
rose of winds
Sachs
seasons
sebäh
éeltânomu
signs
size (apparent diameter) of sun and moon 
solar year 
solstices
stars
sun
ta’emert
Tänä 9
tentyon (= TÔv ØECbv)
Uriel, angel
water clock
windows (for flames or heat)
windows (for stars) 
winds (their qualities) 
winds as moving power 
works of heaven (gebrâta samây) 
ya'ärb 
yahalf
year (see also lunar year; solar year) 
zodiac
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§1. Introduction

The present paper contains a study of equivalence between mass and energy, for 
a system of interacting particles. This question may appear trivial from the point 
of view of general principles in special relativity, for there can be no doubt about 
the validity of equivalence as a basic statement. But if we turn to actual calcula
tions on systems with Coulomb interaction, we find that the resulting self
energies and self-momenta do not correspond to equivalence, and lack four-vector 
properties1. This is certainly surprising to the uninitiated, for one would expect 
beforehand that the Maxwell equations must give equivalence unambiguously 
and in a straightforward manner, since special relativity, in a sense, is suspended 
in the Maxwell equations. It should be added that the results in question have 
often been treated in connection with the problem of electron self-energies 
where they apparently required the presence of non-electromagnetic forces. 
Because of the complications, some authors have preferred to define an electro
magnetic energy-momentum four-vector for the electron1,9. This will hardly do, 
however. The basic classical case is not an electron, but a macroscopic system, 
for which one is not free to define the electromagnetic self-energy or self
momentum.

These preliminary comments will be enlarged upon in the remainder of this 
chapter. But they indicate the aim of the present paper. In fact, we hope to 
convince the reader that simple acceleration processes, if studied with care, 
reveal that there is not only equivalence, but even detailed equivalence: each 
individual term of, e.g., the interaction energy, has separate equivalence. The 
basic conclusions in this respect are contained in §2, where the connection between 
mass, forces and acceleration is studied. A central issue is the question of com
parison of forces acting in different points of a system. In §3 is presented the more 
systematic treatment of accelerated frames of reference. Next, in §4, we calculate 
the various contributions to self-mass in a number of classical and quantal cases, 
including the Dirac equation for a hydrogen atom.

As outlined, our study has an immediate background. But it is also a necessary 
step in a more general pursuit: the endeavour to understand composite systems 
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and elementary particles, including the connection between them and between 
their classical and quantal descriptions. At the end of this paper, in §5, we outline 
general viewpoints on this matter.

Basic equivalence

The equivalence between energy and inertial mass was first established by Ein
stein2 (cf. also v. Laue3). He considered the change suffered by a system emitting 
electromagnetic radiation. The usual derivation consists in showing, first, that 
the energy E and momentum P of any closed system constitute a four-vector. 
The basis for this result is the special principle of relativity, combined with con
servation of energy and momentum for initial and final states of a collision process 
(corresponding to Einstein’s idealized experiments). Second, the four-vector 
may be written as

E = E'y, (1.1)

P = Lyv, (1.2)

where Ez is a constant, and

=_____ 1_
7 (l-v2/c2)1/2 ’

Now, on the one hand, Ez in (1.1) has to be the energy of the system in the rest 
frame. On the other hand, E'/c2 in (1.2) must be the mass M of the system, 
belonging to the non-relativistic limit v << c, and so we obtain equivalence,

M = ^. (1.3)

Equivalence is therefore derived by comparing initial and final states of an 
elastic or inelastic process. The proof concerns not only a stable system ; it includes 
unstable systems. Although it appears that the proof of equivalence is concerned 
with only the total energy of a system, still there are evidently cases where part 
of the energy must have equivalence. Moreover, one can divide the total energy 
of a system into well-defined average contributions from various forms of energy, 
as exemplified by the virial theorem. Beforehand, one would expect individual 
equivalence from these clearly separated contributions. Thus, it is natural to 
investigate the possible validity of detailed equivalence, as formulated in the 
preamble.

The previous results may be put on a more comprehensive form if we introduce 
the Lagrangian of the system. In fact, the above momentum-energy four-vector 
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1/2

with its derivation from collisions, must be connected to a variational principle, 
albeit with limited validity. In an inertial frame where the system has velocity v, 
the corresponding Lagrangian must be

The classical electron model

Already before the advent ol special relativity, Poynting’s theorem of density of 
field energy was utilized in several calculations of self-energy and self-momentum 
of a charged body (cf. e.g. Jammer4). 1'he foremost contribution was made by 
Lorentz5. The results were hardly changed at all by special relativity. We shall 
illustrate the situation in terms of the so-called classical electron model, as quoted 
in numerous monographs (e.g., Jackson1, Pais6, Feynman7).

Consider then a stable spherical shell with radius a, on which a total charge 
Qis uniformly distributed. Ina inertial frame K the shell moves with velocity v. 
According to standard results, the densities of momentum and energy of an 
electromagnetic field are given by the field strengths

In this formula the internal energy E' is a constant of the motion for a given 
internal state of the system. If we now observe the given system from another 
frame, where it has velocity v + <5v, the change <5L becomes

<5L = <5vP, (1.5) 

where P is given by (1.2). Furthermore, the quantity E = — L+v-P corresponds 
to (1.1).

In (1.5) wc are concerned with a variation where the internal state of the 
system is kept unchanged. Thus, we have obtained equivalence, E' = Me2, by 
being able to separate the external velocity variable, v in (1.4), from the internal 
variables of the system, concealed in the constant E'. Moreover, for soft collisions 
— if the internal state of the system is not changed during a collision — the equa
tion of motion will be based on (1.4), i.e. the kinetic contribution to the total 
Lagrangian.

In itself, eq. (1.4) reasserts the surmises about detailed equivalence made 
above. Thus, when the system is in internal statistical equilibrium, and E' 
separates into definite terms according to the virial theorem, these terms should 
contribute separate mass terms in the account of the system.

(1-6)
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u(r,t)=^(E2(r,t)+B2(r,t)). (1.7)

In these equations we introduce the field belonging to the shell, as observed 
in the frame K. By integrating over all space we find a momentum Pel, and an 
energy Eel (cf. Jackson1, Becker and Sauter8, Rohrlich9)

Pei =jd3r g(r,t) =yv, (1.8)

Eei =|d3r u(r,t) = ? (1 + J 72) • U-9)

In particular, it is seen that, in the rest frame, the momentum is Pel = 0, and the 
energy E'j = Q2/2a. Therefore it follows that not only is equivalence lacking, 
but also Pel, Eel, P'j, and E^ fail to transform like the four-vector (1.1), (1.2). 
As is well known, this curious result cannot be rejected out of hand, the reason 
being that Pel and Eel do no represent the total momentum and energy of the 
shell. The shell in question must in any case be stabilized by other, nonelectro- 
magnetic, forces. These forces, or Poincaré stresses, should then compensate the 
erratic behaviour of (1.8), (1-9), giving a correct total four-vector.

The results (1.8) and 1.9) are obtained somewhat indirectly, in a sense. Their 
basis, i.e. the densities (1.6) and (1-7), was derived in turn by studying the action 
of forces from material charges on an electromagnetic field. Therefore, by omitting 
the intermediate step (1.6), there should be a more direct, but apparently 
equivalent, way of obtaining the self-mass due to Coulomb interaction. In fact, 
one can instead find the electromagnetic self-force of an accelerated shell of 
charge. An early calculation of this kind was performed by Born10 (cf. also 
Heitler11, and Jackson1 ). If the shell is momentarily at rest, but accelerated, at 
time t = 0, one may find the electric field Es(r,t) caused by it. We assume that 
the acceleration is small, or ga/c2 1. It follows that Es(r,t) is linear in g. Let 
further ß(r) denote the internal charge distribution of the shell. The total self
force Fs is then linear in the acceleration

Fs = fd3rß(r)Es(r,t = 0) . (1-10)

By these means the self-mass was calculated as the ratio Fs/g, the result being in 
agreement with (1.8).

It thus looks as if the previous result (1.6) has been vindicated in an elemen
tary way by the self-force (1.10). The latter becomes our starting-point, however. 
For although it concerns non-relativistic motions and an apparently innocent 
acceleration process, still this process contains unexpected relativistic pitfalls, 
and (1-10) is not connected to the self-mass, as we shall see ind §2.



40:11 7

§2. Self-Mass and Self-Force of Accelerated Systems

In this chapter we attempt to find the way in which inertial mass can be deter
mined by means of acceleration processes. Since we know that there may be 
hidden difficulties in this problem, we try to be careful — and thereby perhaps 
overly cautious — in deriving the relativistic connection between acceleration, 
forces, and mass. We do it in two steps. First, we look for the physically simplest 
acceleration process for a system of finite size. Next, we find the expression for 
the mass of a system, given in terms of its acceleration and the forces acting on it. 
We will then be ready to find actual self-masses for charged systems, and have 
also prepared the way for the more systematic treatment in the following chapters.

The problem at hand can be exemplified by an elastic body originally at rest, 
and in equilibrium, in an inertial frame. We want to transfer it to another 
inertial frame, where it should finally be at rest and in the same state of equilibrium 
as before. The simplest way in which to bring about this change is to have an 
adapted acceleration of the various parts of the system, such that it is moved as 
if it were rigid. In fact, by means of the idealized process of rigid acceleration we 
avoid producing internal stress or excitations in the system, as well as growing 
deformations. It would of course be possible to employ acceleration processes 
other than the rigid one; they would be more complicated, however, and would 
need the rigid acceleration as a standard of reference.

Rigid acceleration

As our first step we therefore consider the kinematical consequences of rigid 
acceleration of a static system. Then there exist successive frames in which the 
velocities of all constituent particles vanish simultaneously. Consequently the 
time, tj, at which the i’th particle obtains a given velocity, v0, in the inertial

Fig. 1. Space-time diagram showing world 
lines of system of accelerated particles. In 
the inertial frame K the time t, at which 
the i’th particle obtains a given velocity, 
v0, depends on its position xt relative to the 
reference point. The instances tj and q, are 
simultaneous in the rest frame, i.e. the 
oblique line corresponds to simultaneity 
in this frame. 
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frame K depends on its position, r, (see Fig. 1). For constant acceleration, g(, of 
the i’the particle we then have, since we consider small time intervals and velocities,

v0=gjti. (2.1)

Let us measure positions relative to some reference point chosen arbitrarily within 
the system, and let t0 denote the time during which the reference point has been 
accelerated with acceleration g0 . Since the instances t0 and t; in the frame K 
must correspond to simultaneity in the rest frame, they arc to first order in v/c 
related by the equation

It therefore follows that the accelerations of the various points iq must obey the 
relation

Si _ l + goTj/c2 • (2'3^

Thus, the acceleration of the points iq decreases in the direction of g0.This effect 
exactly corresponds to the Lorentz contraction of the system as measured from 
the frame K.

Mass determined from forces and acceleration

As a second step, let us study the connection between force, acceleration, and 
mass. The fundamental relation between the three is obtained in the idealized 
case of a point particle. In fact, consider a point particle at rest, and with mass m. 
If it acquires a small acceleration g, the applied force must be F = gm. More
over, during a time <5t, its change of momentum and velocity are, respectively, 
<5p = F<5t and <5v = g<5t. This result has an immediate consequence. For suppose 
that, by applying the above force F in one point of a composite system, we obtain 
the acceleration g of this point, while the system remains, internally, in a stationary- 
state. Since the momentum transfer and velocity change remain as before, the 
composite system must have the same mass m as the above particle. Presumably, 
part of its mass is then due to deformation energy caused by the acceleration. 
These seemingly trivial conclusions give one important clue to self-mass problems, 
as shown in an example at the end of this chapter.

Having verified the basic results belonging to a point force, we next consider 
acceleration of a system where forces arc applied in several points. It follows 
from, e.g., eq. (2.3) that in special relativity there must be a somewhat intricate 
connection between forces on a system, its acceleration, and its total mass. Because 
of this, and because of the important consequences, we treat the problem at hand 
in an elementary and somewhat elaborate manner. We also want to show that
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one is not concerned with new definitions, but instead with an inherent physical 
property of accelerated systems: although the velocities are non-relativistic, we 
sometimes have to introduce a relativistic correction to the usual conception of 
forces.

Consider then a set of point masses mi5 at , initially at rest and with no 
mutual forces. By means of suitable external forces we can accelerate the masses 
together, according to (2.3). We must act on them with the individual forces Fs, 
located at r,,

V = „ “‘i

* 80 1 + goTi/C2 ’ (2-4)

where the acceleration at r = 0 is g0. Now, if we compute the total force F, we 
obtain 

F = XF=Sgo
i i 14-go-rj/c2 (2-5)

which quantity is not proportional to the total rest mass, M = Snii- Instead, 
the exact expression for the mass M is, by (2.4),

g»M = SF,(l + S^H). (2.6)

In point of fact, we have here normalized all forces to the point r — 0, with 
acceleration g0. At first, eq. (2.6) might appear to be an unnecessary elaboration, 
for if g0 is-imagined to be sufficiently small, it looks as if the factors (1 +g() Tj/c2) 
can be replaced by unity. That will also be true in many cases, but for self-forces 
it is in error, because they contain large leading interaction terms, which would 
cancel if this replacement were made.

The conception of rigid acceleration may appear a little artificial for non- 
interacting point masses. But the idea is, as before, that we can replace this system 
by an actual system of interacting masses, e.g., an elastic body. In order not to 
deform the body more and more during the acceleration, we must keep to the 
prescribed rigid acceleration. As before, the total mass of the clastic body must 
be the same as that of the non-interacting point masses, if the accelerations and 
forces are the same. The formula (2.6) is therefore the general expression for the 
mass of the system, calculated in the simplest consistent situation.

Electromagnetic self-mass

Suppose that a system consists of charged particles, with individual masses req. 
At time t = 0 in the frame K the particles are all at rest with separations rik and 
electrostatic energy
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(2.7)

where Çj is the charge of the i’th particle. We assume that the particles are all 
accelerated according to (2.3), i.e. with rigid motion. By means of the Lienard- 
Wicchert potentials we can find, for t = 0, the total electric field at r(, as generated 
by all the other particles. It is readily shown to be1’12, to first order in the accelera
tions gk,

where rik = rt — rk, and gk is given by (2.3). Note that the first term in the 
brackets is the dominating Coulomb force.

The self-forces are qiE(ri), and by applying, in principle, external forces 
F = —qjE(rj) + mjgj, we maintain the stipulated acceleration. The total mass 
is now given by (2.6) and (2.8), i.e.

The right-hand side of (2.9) contains g0 to first power, and higher powers. The 
latter terms are to be omitted, however, since we disregarded higher order terms 
in (2.8). But then the multiplying factor l+g0’ri/c2 is needed only for the domi
nating Coulomb term, and we may also put gk = g0 in the second term within 
the brackets. Finally, a cancellation occurs for all terms directed along rik. We 
can then divide out the common factor g0, and obtain the inertial mass

(2.10)

H creby we have found separate equivalence in a simple example of Coulomb 
interaction. Equivalence even applies for each individual pair of particles.

As expected, the calculation for the Coulomb interaction is independent of 
the presence of other compensating forces, whose contribution to self-mass may 
be obtained separately, if the corresponding field equations are known. But even 
if the compensating forces are only known on an approximate, non-relativistic 
form, we can obtain their contribution to the self-mass. At the same time, our 
basic equation (2.6) gives a condition to be fulfilled by the retarded solution of 
these forces, to first order in relative velocities.

We omitted the deformation energy caused by the acceleration, and its 
equivalence. This is mainly because the acceleration did not correspond to a 
normal physical situation. The external forces introduced were artificial, in that 
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they exactly took care of maintaining the configuration of the particles within 
the undisturbed system. In actual acceleration processes one can instead be con
cerned with an external electric field which is constant in space and time. Then, 
the configuration of the particles will be changed slightly from that of the undis
turbed system. Hereby, deformation energy, and its equivalence, can be obtained. 
In many cases, such deformation terms are of higher order in g0, and therefore 
do not affect the basic result (2.10). We shall presently discuss a simple example 
where deformation energy plays a major role.

Basic equation of motion

From the previous results it is easy to formulate the basic equation of motion of 
charged system momentarily at rest, and placed in a weak external electric field 
Eext(r,t) varying slowly in space and time. By a slow variation in space we mean 
that the relative change of Eext(r,t) is small within the system. We suppose that 
the field varies sufficiently slowly so that the system remains in a quasistationary 
state. Eq. (2.9) provides an expression for the acceleration g0 of a standard point 
r0, times the total mass M as arising from Coulomb interaction and from other 
energy contributions in the system. Next, according to (2.6) the product g0 M is 
equal to the weighted sum of external forces,

Here, we expand Eext in powers of r, — r0, and include only first order terms on 
the right hand side. But since the standard point r0 may be freely chosen, we place 

it at the charge centre, r0 = rc = Sq^/q, where q = Sffi is the total charge of
i î

the system. For it then turns out that first order terms in r} —r0 disappear, and 
we are left with qEext(rc,t) on the right hand side of (2.11). The equation of 
motion is now simply, in the momentary rest frame,

gcM = qEext(rc ,t) , (2.12)

where rc is the charge centre, and gc its acceleration. Moreover, q is the total 
charge, and M the total mass of the system. Thus, the result (2.12) represents a 
precise basic equation of motion of a charged system. It gives an essential modifi
cation of the so-called Abraham-Lorentz equation; the standard factor 4/3 mul
tiplying the electromagnetic mass has disappeared, because equivalence reigns 
in M. In addition, eq. (2.12) contains the subtlety that the system is represented 
by one definite point, i.e. the charge centre rc. Consequently, eq. (2.12) can be 
used as an equation of motion for, say, a uranium nucleus in an external electric 
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field, or, for a classical electron model. One may immediately correct the equation 
by a familiar term containing radiation damping, if so desired.

Although, as mentioned, eq. (2.12) is widely applicable, let us register main 
corrections to it, or assumptions contained in it. We have assumed that the 
external field varies slowly in time. The time variation of Eex1 will, first, give rise 
to adiabatic changes of M and, second, to non-adiabatic mass excitations. Third, 
we have already mentioned that a time variation of g(. leads to radiation damp
ing. Finally, if g, quickly changes direction, the mass centre need not remain 
behind the charge centre, and rotations may be induced. In order to study that, 
systems with spin must be included in the description, but that is outside the 
scope of the present paper.

Shortcomings of standard formulae

? with the standard derivation of self-force
as alluded to in §1, and performed by Heitlcr, for instance. In that description, 
the self-fields are again given by 2.8), but with gk = g(), which docs not lead to 
immediate errors. Next, the total force is calculated, corresponding to (1.8) and 
(2.5), and erroneously identified with the mass times the acceleration g(). Thus, 
from (2.8) and (1.8)

, V 1 I JgoTk) \
F = E Fj = 2j mjgo + S 2r T5 go + rr Fik ’ 

i i i,k z,1ikc \ 1 ik /
2.13)

where the dominant Coulomb terms have cancelled out, in contrast to (2.9).
For a spherical symmetric charge distribution, with electrostatic energy U, 

the expression (2.13) leads to

(2-14)

In case the charge distribution is merely symmetric about the direction of g„, 
the factor 4/3 is seen to be replaced by a number 1 + £, where 0 < £ < 1. For a 
general distribution, however, the force F need not even point in the direction of 
g0. We have hereby clarified in some detail the shortcomings of the Galilean 
concept of a total force and its association with total mass, in special relativity.

Next, let us consider the standard formulae for self-momentum and self-energy 
of a charged system, i.e. (1.8) and (1.9). Although they are connected to the 
above-mentioned standard self-force calculation, their short-comings are of a 
more elusive kind. Still, in order to elucidate their basic contents, we can observe 
the following. If a system has internal Coulomb energy U, then the standard 
self-momentum corresponding to (1.8) can be PC1 = (U/c2)v-y • (1 +£), where 
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ê = 1/3 for a spherically symmetric charge distribution. Similarly, the standard 
self-energy becomes Eel = U-y-(l + fv2/c2), corresponding to (1.9). Therefore, if 
we form the difference v • Pel — Eel, we invariably get a quantity independent 
of £, namely

I v2\1/2Lel = -EeI+vPeI=-U^l-^) • (2.15)

In point of fact, we have recovered eq. (1.4), i.e. the Lagrangian belonging to 
equivalence. Moreover, it is apparent that, instead of making the indirect deriva
tion of (2.15) via Eel and Pel, we could have obtained it directly by integration 
of the invariant Lagrangian density in space, as belonging to the field and to 
its interaction with matter, or yricld + J£int .

Returning to the Lagrangian in (2.15), we have already seen, in (1.5), that 
if we vary Lel with respect to v, keeping the internal state unchanged, we arrive 
at the momentum P= (U/c2)y-v, leading to equivalence. In fact, this implies 
detailed equivalence, the Coulomb contribution being only part of the total 
internal energy.

Next, it also becomes clear how the standard momentum Pel can be connected 
to (2.15) : when v is varied, there is assumed to be an associated variation of the 
internal state — i.e. of U. Thus, Pel will result if we let U vary proportionally to 
(1 — v2/c2)5/2, when Lel is varied with respect to v. The factor in question must 
be due to a Lorentz transformation of the internal variables of the system.

We have thus realized that the standard momentum and energy (1.8) and 
(1.9), arise from an unwarranted variational procedure, whereby they lose con
nection to our basic concepts of momentum and energy of an isolated system, as 
described in §1. Such results arise in general from arbitrary transformations of 
internal variables of a system, where momenta become abstract quantities, with
out direct physical significance.

Self-mass for point force

The present discussion of the central ingredients in equivalence calculations is 
perhaps best concluded by means of an example serving a triple purpose. First, 
it concerns an external point force, implying the simplest possible connection to 
mass and acceleration. Second, the equivalence in question applies to deforma
tion energies, not studied explicitly above. Third, Poincaré stresses cannot be 
introduced.

Let two mutually repelling charges, qa and qb, be accelerated from rest along 
their line of connection, rba. An external force Fa acts on particle a, while particle 
b in turn is made to accelerate by the Coulomb repulsion from particle a. The



14 40:11

force and distance rab are balanced such that the particles are accelerated in 
rigid motion. The internal energy of the system, qaqb/rab, is purely an energy of 
deformation. The internal electric fields are given by (2.8), and so the equations 
of motion of the two particles become

(2-16)

_ qaqb qaqb
æbgb „3 ®*ba r „2 ga >Lb Lbc

(2.17)

where all vectors are collinear, while ma and mb are mechanical masses. Further, 
the condition of rigid acceleration determines gb in terms of ga and rba, cf. (2.3),

= ga___
Sb H-ga-Tba/c2'

We multiply (2.17) by 1 + (ga -rba)/c2, add 72.16), and obtain to 
in ga

T? / i i qaqb i \

Since the mass M of the system must be given by Mga = Fa, we find

Kf i , qaqb 1 M ~ m + mb + -y— -a • ab C

In the simplest imaginable case we have thus obtained equivalence, 
deformation energy in fact.

Let us next turn to the standard procedure, where the total self-force is 
calculated, cf. (2.13) or (1.10). It corresponds to adding the right-hand sides of 
(2.16) and (2.17), omitting Fa. The self-mass becomes erroneous, or 2qaqb /(rabc2)5 
like in (2.13). We might similarly, as done by Heitler, add (2.16) and (2.17) with 
the Galilean demand gb = ga, and obtain a wrong value of the force Fa. In any 
case, there are here no compensating Poincaré stresses, which can repair the error.

Whereas, in the present chapter, we have arrived at the proper treatment 
belonging to coordinates (inertial frames) where equations of motion are simple 
but self-mass calculations delicate, the theme in the following will be reversed. 
In fact, we shall introduce coordinates (Moller box) where self-mass calculations 
become extremely simple; our task will be to obtain the equations of motion. 
Thereby, the discussion becomes lengthy, containing transformations of equa
tions of motion in various classical and quantal cases.

(2.18)

first order

(2.19)

(2.20)

and for a
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§3. Systematic Description by Means of 
Accelerated Reference Frame

Basic properties of Møller box

The previous chapter contained a preliminary analysis of simple acceleration 
processes for which the intrinsic state remained stationary in the instantaneous 
rest frame. A systematic analysis of such processes must be based on a description 
of the system in an accelerated rigid frame of reference, always coinciding with 
the instantaneous rest frame. A coordinate system of this kind, where each point 
has a time independent acceleration in its momentary rest frame, we shall refer 
to as a Møller box*).

Before embarking on a detailed discussion of the Møller box, we may point 
out some of its salient features. First, the physical laws in the box are independent 
of time, i.e. there is invariance against time displacement and time-reflection. 
Second, there is an inborn simultaneity, like in a static gravitational field. Third, 
it also follows that a charge at rest in the Møller box gives rise to a purely elec
trostatic field in this frame. This feature corresponds to the fact that for a static 
charge in the box, performing a hyperbolic motion in an inertial frame, the 
retarded and advanced fields are identical within the box. Fourth, in the inertial 
frame we had to distinguish between, on the one hand, that weighted sum of 
forces which leads to the total mass of a system and, on the other hand, the total 
force. In the Møller box these concepts are united in the sense that the total 
force required to keep a body at rest in the box is proportional to the total mass 
of the body.

When introducing the Møller box it is useful to consider first the hyperbolic 
motion of a single particle. Let a particle in an inertial frame K be accelerated 
along the X-axis, with the constant acceleration g0 in its rest frame. It is convenient 
to introduce the length Â = c2/g0 and write for the trajectory

Xo = Å cosh , 

cT0 = A sinh .

Thus, the coordinates cT0 and Xo lie on the hyperbola 

X2 —c2T2 = A2. (3-2)

*) Accelerated rigid frames of reference are discussed in some detail by C. Møller in his mono
graph on relativity13. We have adopted the name Møller box for the particular frame discussed in 
the text. The wording box is meant to indicate that we are considering a space-time domain of 
finite extension.
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Here (To, Xo, Yo, Zo) are the particle coordinates in the inertial frame K, and t 
denotes proper time for the particle. For this motion the four-velocity

Fig. 2. The world lines of the 
reference points 0,1 and 2 in 
the Møller box are scaled 
hyperbolae with the light cone 
through the origin as the com
mon asymptote. Successively 
steeper lines through the origin 
correspond to progressive 
time in the Møller box. Proper 
time on the hyperbola labelled 
0 has been chosen as the 
common standard time in the 
box, and distances are measured 
from this hyperbola. The wavy 
lines represent the world line 
of a light signal exchanged 
between the observers 1 and 2.

Uo =

is always perpendicular to the radius vector from the origin (cT0, Xo , 0,0). It is 
therefore clear from Figure 2 that if another particle is to remain at rest relative 
to the first at the distance Xj, its world line will be given by

(cT, , X,, 0,0) = (1 + y) . cT„, x„ , 0,0) (3.4)

i.e. it will also perform a hyperbolic motion, but with rest acceleration 
g0(l +gox1/c2)"1. Thus we are led to the introduction of the accelerated rigid frame, 
the Møller box, with coordinates (t,x,y,z), by the transformation from the vari
ables (T,X,Y,Z) in the inertial frame K:

X = (x + A) cosh , Y = y, Z = z, 

cT — (x + A) sinh^y, 
(3.5)
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corresponding to the line element

ds2 = c2dT2 - dR2 = (1 + • c2dt2 - dr2 . (3.6)

For T = t = 0 we have X = x + A, where we have selected a standard hyperbola 
from which we measure distances along the x-direction in the box. The proper 
time t of the standard hyperbola x = 0 has been chosen as the common standard 
time variable in the box. Hence, outside the standard hyperbola, local proper 
time deviates from standard time. In fact, the relation between standard time t 
and local proper t at the position x is given by

dr=(l + y)dt. (3.7)

The choice of the standard time t in the Møller box makes explicit the in
variance against time displacement and time reflection inherent in this static 
reference frame. Therefore, this way of synchronizing events corresponds to the 
inborn simultaneity in the box. This can be illustrated by considering a light 
signal moving along the x-axis between two observers 1 and 2 at rest in the box 
(see figure 2). We assume that the light signal is sent back at time T = 0. We 
notice that since each hyperbola corresponds to the locus of constant distance 
from O in Minkowski space, they are symmetric with respect to the radius vectors 
in this space. We have therefore drawn the figure such that the inherent symmetry 
of the hyperbolae is made explicit with respect to the axis T = 0. Events on the 
line OBøBj are simultaneous with the departure of the light signal from the first 
observer, and events on the line OA0Aj are simultaneous with its return. It is 
obvious from the figure that if the events are synchronized to proper time of the 
standard hyperbola x = 0, the time of arrival to the second observer will be half
way between the time of departure from the first observer and the time of return. 
This result is also directly borne out by evaluation of the standard time intervals 
in question, which are found to be (A/c) log [(x2 + A)/(xx + A)], xT and x2 being 
the coordinates of the two observers.

It follows from the transformation (3.5) that a particle at rest in the Møller 
box at position x at time T — t — 0 has acceleration

8W=m=l + gox/c8 <3'8>

in the inertial frame. This is of course the result (2.3) already deduced for the 
rigid acceleration in the inertial frame. In contrast, a particle at rest at T = t = 0 
in the inertial frame at the same position X = x + A, in the Møller box has an 
acceleration



Thus (3.9) expresses the acceleration of a freely falling particle in the coordinates 
of the Møller box. It has of course the opposite sign of (3.8), but, more important, 
its magnitude increases in the direction of g0 in contrast to g(x).

The line element (3.6) implies a simple scaling law for velocities. In particular, 
the velocity of light in the box is given by

c(x) = c-(1 + ^f) . (3.10)

In fact, whereas the velocity of light in local units is alsays c, it must be changed 
by the factor in (3.7) when we measure in standard time.

Electrostatic interactions in Møller Box

In this section we shall be concerned with charged particles moving in static 
potentials*).  The field equations for static potentials in the Møller box are 
derived from the action principle

*) For the sake of completeness, a discussion of electrodynamics and the equations of motion of 
charged particles in the Møller box is given in appendix A, while the static potentials are solved in

<5S, + <5Slnt = O, (3.11)

where the contributions to the action from the field and the interaction are 
obtained from the general expressions (A 13) and (A 14) :

S' = “^JdtkrÜ+^M)’ (3I2)

Slnt =-jdtld3rß(r)p(r) . (3.13)

If (3.11) corresponds to variation of the potential <p for fixed charge distribu
tion Q, one obtains to first order in A-1 = g0/c2 the result
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Consider the potential (p'r ;rj in the point r generated by the charge density 
0(r) = qi<5(r~rx), i.e. by a single charge qj at rest in the point rx. According to 
(3.14) this potential is to first order in 1/2

In order to appreciate the significance of the second term in the brackets in 
(3.15), consider a second charge q2 at rest at the position r2. We notice that the 
density of the interaction energy of two charges depends on the values of the two 
charges only through their product. We therefore expect that the position of the 
centre-of-mass of the interaction energy is always the same as for two identical 
charges, namely midway between them. Thus, in the interaction energy q2 ^(r2;rx) 
we can interpret the term

(SEint “= |r—r2|c=go 2 2 ‘ (3.16)
1*2 rl|C

as the potential energy of a mass q1q2/c2|r2 —r2| located at the midpoint between 
the charges in the artificial gravitational field g0. The energy (3.16) therefore 
represents the work required to lift a mass equivalent to the Coulomb energy from 
the reference level x — 0 to the height (xj + x2)/2. Hence we expect that the sum 
of the mutual forces be equal to (q1q2/c2|r2 — rJ/gQ. This is indeed in accordance 
with (3.15), from which it follows that

n 99’(r2;ri) , n 9<?(ri;r2)42---- 5-------- h 41---- 5—"—ox2 ox1
qiq2

r2~r1|c2
go- (3-17)

This relation, which embodies the equivalence between electrostatic energy 
and mass, will be crucial in the following discussion. It corresponds to the weighted 
addition of forces (2.6), applied to the Coulomb case (2.8), but in the Møller 
box it emerges as a direct consequence of the term (3.16) in the interaction energy.

The equations of motion in the Møller box, for a particle of mass m and 
charge q moving in a static potential (p, is obtained from the action principle
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If (3.18) corresponds to variation of the particle coordinates for fixed potential, 
one obtains the equations of motion of the particle. They correspond to the 
Lagrangian

Equivalence for kinetic energy

The first term in the Lagrangian (3.21) turns out to contain separate equivalence 
for kinetic energy. In order to illustrate this property let us consider a ball of 
mass m, bouncing between ceiling and floor of a small rectangular enclosure 
which is kept at rest in the Møller box, with its floor at the reference level x = 0, 
and with its edges parallel to the coordinate axis. Let the ball jump from the 
floor with momentum px(l) in the x-direction and hit the ceiling after a time T 
with momentum px(2) along this direction. We assume that the enclosure is so 
small that the kinetic energy of the ball can be regarded as constant during its 
motion. Consequently the net momentum transfer per unit time from the ball 
to the box is

Px(2) ~px(l) 1 f dpx 1
T Tj dt T

0 o
where we have used the equation of motion corresponding to the first term of 
the Lagrangian (3.21). In order to keep the enclosure at rest in the Møller box, 
the presence of the bouncing ball thus requires an extra force öS' so as to support 
the floor of the enclosure

= ( i — v2ic2yi2 S° ■ (3.23)

This force is the same in the Møller box as in the particular inertial frame, 
which momentarily coincides with the enclosure, since standard time coincides 
with proper time at the location x = 0.

However straightforward this demonstration of separate equivalence for 
kinetic energy may appear, one should note that it stands in contrast to the 
conventional treatment of similar examples. In fact, in the latter approach 
equivalence can only be stablished by explicitly taking into account the stresses 
set up in the walls by the bouncing ball, and would not apply to the kinetic energy 
separately.
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§4. Equivalence for Atomic Binding Energies

So far we have discussed quite idealized systems in which there was either electro
static or kinetic energy present. As a simple example of a more realistic physical 
system with both kinetic and potential energy, we consider a hydrogen atom and 
enquire into the total force necessary to keep the nucleus at rest at the position 
rn = 0 in the Møller box. This force is the same in the Møller box as in that inertial 
frame in which the nucleus is momentarily at rest, since standard time coincides 
with proper time at the position r = 0. For simplicity we treat the atom as a one- 
particle system, i.e. we neglect the motion of the heavy nucleus around the mass 
centre.

The atom is assumed to be in a stationary state in the Møller box. Within 
quantum mechanics, this means that the wave function corresponds to a definite 
energy in the Møller box and the associated charge distribution of the electron is 
static in this frame. In the case of classical mechanics we are dealing with definite 
orbits, time-averages over which correspond to quantum mechanical expectation 
values. One would expect that the question of equivalence be independent of 
whether a quantal or a classical description is used in accounting for the stability 
of the system. This is indeed borne out by the following discussion.

Classical hydrogen atom

Fhe external force, 3-, required to keep the nucleus with charge Ze and mass mn 
at rest in the box, must compensate the fictitious gravitational force — mng0 acting 
on the nucleus in the accelerated frame, as well as the reaction force on the nucleus 
from the electron of charge — e and mass me .

According to the Lagrangian (3.21) the time average, Fx , of this reaction 
force over a time T, long compared to the orbital periods of the atom, is

(4.1)

where re(t) is the coordinate of the electron. From the relation (3.17) and the
Lagrangian (3.21) we find for the integrand in (4.1)

Ze 9xn
Ze(-e) 

^Ire~rn|
8^ire;rn

9xe

_2Ze2
i y —r 3xl e n I

Because of the equations of motion, the term

(4.2)
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8L cl 9L
9xe dt 9vex

does not contribute to the time average (4.1). Hence, keeping only terms of order 
1/Â, we obtain an average reaction force

T

(4.3)

We notice that the integrand in (4.3) is the energy of the electron multiplied by 
g0/c2, and accordingly time independent. Thus the total force required to keep 
the atom at rest is

r in Ze2 1
= |_m" + (l-^/c2)1'2 ~ |re—rn|c2J ’ (4'4)

or
ZF =(mn + me-Jjg,, (4.5)

where B is the binding energy of the atom. The relation (4.5) expresses the 
equivalence between binding energy and mass for a classical hydrogen atom to 
all orders in v/c. The limitations to this result are solely due to the possible radiation 
from the system, proportional to some power of e2. The classical orbits depend on 
the charges through their product only. We can therefore consider (4.5) as an 
exact result for a given orbital configuration of the atom, corresponding to the 
limit e2—> 0 for fixed value of the product Ze2, in which limit the radiation is 
negligible.

Quantal hydrogen atom

The above discussion of a classical hydrogen atom can be carried over to the 
quantal case by passing from a Langrangian to a Hamiltonian description and 
replacing time averages by expectation values. Whereas the motion of the nucleus 
is still treated in classical terms, the state of the electron is now described by the 
Hamiltonian operator constructed from the Lagrangian (3.21):

H = 1 {(* + ï) C 111 ® C’2 + Pe 1V2 + C [me C'2 + Pel1/2 (ï + X/)| “ C ? (re Î rn )

H0-e?(re;rn) . (4.6)

Here the operators re and pe refer to the electron and satisfy the usual commuta
tion relation, whereas rn, the coordinate of the nucleus, is a c-number. 1 he first 
term, Ho, has been symmetrized in an obvious manner, and the potential ç>(re;rn) 
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generated by the nucleus, is given by (3.15). We use here the Hamiltonian (4.6) 
in order to emphasize the analogy to the classical treatment. As indicated below, 
similar considerations can be applied to the Dirac Hamiltonian, whereby effects 
associated with the electron spin are included.

In close analogy to (4.2) we obtain from (4.6)

Since the expectation value of

Ze2 f 9 
A|re-rn| |_3xe’

H-H„], (4.7)

in the last term of (4.7) vanishes in a

stationary state, we get for the expectation value, Fx, of the reaction force

Fx = -<^
^(p^n;re)

9xn ^> — — < y/ c[m2c2 +Pe]1/2 — _Ze!_
re-rn

(4.8)

Thus, the total force required to keep the atom at rest is given by eq. (4.5).

The Dirac equation

In order to establish the form of the Dirac equation in the Møller box we notice 
that for any value of the standard time t, the wave function ^(t) in the Møller 
box is equal to the wave function ^K(t)(T) in that inertial frame K(t) which at 
time t coincides with the box

F(t) = ^K<t)(T) ■ (4.9)

Here T is the time measured in the inertial frame K(t) and, according to (3.7), 
the time intervals dt and dT are related by

dT = ^l + j^dt. (4.10)

The time variation of <^(t) is due partly to the change of inertial frame K(t) 
with time and partly to the intrinsic time variation of the state. In order to find 
the change with time, t, of the wave function at a fixed space point in the box, 
let us consider the three events pictured in Fig. 3. Here the events 1 and 2 refer 
to one and the same space point in the box, but are separated by the time interval 
<5t in this frame. Similarly 2 and 3 are simultaneous in the box, whereas 1 and 3 
refer to one and the same space point in the inertial frame K(t), but are separated 
by the time interval <5T in this frame.
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Fig. 3. Space-time diagram 
showing the events 1, 2 and 3, 
mentioned in the text, and two 
successive rest frames K(t) 
and K(t + <5t). The events 1 
and 2 refer to one and the same 
space point in the Møller box, 
whereas 1 and 3 refer to one 
and the same space point in the 
the inertial frame K(t).

For the sake of simplicity we use as variables in the wave function the numbers 
referring to the appropriate space-time points. With this notation we get 

y/(2) — </(l) (2)—^ (1) = (^ (2)—yc (3)—^ (1)1
V V ’ K(t+<ît)V ’ K(tp 7 V K(t + <5t)V ’ 7 V K(t)V ' Y K(t)V 7

(4.11)
Since the separation between the points 2 and 3 is of the order g0 (<5t)2, we get to 
first order in <5t

/ \ 31/*'(2)-*'(l)=Kt+Jll(2)-^(t)(2))+-^iT. (4.12)

Because the inertial frame K.(t4-<5t) moves with 
v — g(x)<5T = go<5t relative to the inertial frame K(t), 

the infinitesimal velocity 
we obtain

(+.13)(2) - exp(^T)*'Km(2) -•5t)’,K<»(2)

Here the matrix exp (~|av/c), where a denotes the usual Dirac matrices,



40:11 25

transforms the wave function from the inertial frame K(t) toK(t-TJt). Combining 
(4.10), (4.12) and (4.13), we obtain

Here HD is the Dirac Hamiltonian in the inertial frame K(t),

Hd = ca (p + £ AK(t)j + /?mc2 - epK(t), (4.15)

where (?>K(t), AK(t)) is the four-potential in the frame K(t), and where the electron 
charge is — e. The Møller box coincides with K(t) at time t, and therefore

p = — ihVr, (4.16)

where r denotes the spatial coordinates in the box. From the equations (4.14)- 
(4.16) it follows that the Dirac equation in the Møller box takes the form, valid 
to all orders in 1 /A,

ih!t=2[(iH)H°+H4i+i)k- <4-i7>
From eq. (4.17) one may derive the continuity equation

'Therefore, the quantity (— ey/+i//) is the charge density in the Møller box and 
(—e^/+( 1 + x/A)ac^) is the charge current density.

In order to apply the Dirac equation to a hydrogen atom with the nucleus at 
rest at r = 0, we have to find the potentials (pK{t} and AK(t) generated by the 
nucleus. Because the inertial frame K(t) is the momentary rest frame of the 
nucleus at time t, the retarded potentials are to first order in the acceleration 
given by (cf. ref. 12, p. 167)

_ Ze i Ze d2r , 
^K(t) r ' 2c2 dT2 ’

(4.19) 
Ar ( t ) 0 >

where r = |re —rn and d2r/dT2 refers to the inertial frame K(t), i.e.

_ go*(re~rn)
dT2 r (4.20)

Thus we obtain
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From (4.15) and (4.17) we then get

={|(1+l^)(C<,l‘Pe+^mec2) +^(C<X'Pe+^mec2)(1+^]-e«!,(re;rn } V' 

(4.22) 
Here the potential

^(re;rn) =(1 + ^£)<!’K(t)(«,e;rn) (4-23)

is seen to be identical with the electrostatic potential in the Møller box as given, 
to first order in 1/2, by (3.15). The Hamilton in (4.22) is just what one would 
obtain by simply replacing the square root in the Hamiltonian (4.6) by 
(ca • pe +/?mec2).

Since (—ey/+y/') is the charge density of the electron in the atom, we can 
immediately write down the expectation value, Fx , of the reaction force on the 
nucleus from the electron in a stationary state. By steps analogous to those of eq. 
(4.7), we obtain

> +<yde

, o 2 Ze2 g0= ca p,.+/?mec - _ -i >~2
• I*e x n !1 L

(4.24)

Thus the total force required to keep the atom at rest is given by the expression 
(4.5), where B, the binding energy of the electron, now includes spin-orbit coupl
ing, the Darwin term and all other effects contained in the Dirac Hamiltonian.

It is also possible to demonstrate equivalence for a hydrogen-like atom de
scribed by the Klein-Gordon equation. Since the argumentation is somewhat 
different from the cases considered so far, the Klein-Gordon equation is treated 
separately in appendix C.
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Thomas-Fermi atom

In the previous analysis we have considered equivalence for electrostatic energies 
and kinetic energies of a single particle bound in an atom. When we turn to more 
general systems, consisting of several moving charged particles, one might attempt 
to base the discussion on a mechanical description in terms of the coordinates 
and velocities of the particles only. It has turned out, however, that this descrip
tion can in general only be carried to terms proportional to 1/c2, within an expan
sion in powers of 1/c. The corresponding Lagrangian is the familiar one intro
duced by Darwin (cf. Landau and Lifshitz12). Equivalence may be demonstrated 
within this scheme, but a strong limitation is then imposed on the internal 
velocities of the system as well as on the velocity belonging to Lorentz transfor
mations. Such limitations are avoided in a self-consistent description of the system, 
in which each particle interacts with a common four-potential, the latter being 
generated by the particles themselves. As a first step towards such general dynam
ical descriptions we shall study equivalence for the simple case of a non-rclati- 
vistic Thomas-Fermi atom.

The first step is to establish, within the Møller box, the equilibrium condition 
for the electron distribution in an atom, the nucleus of which is at rest at rn = 0. 
The local Fermi momentum of a degenerate electron gas is

pF(r) = (37i2)1/3hn1/3(r), (4.25)

where n(r) is the density of electrons. Thus, the electron charge density is

ße(r) = —en(r), (4.26)

and the total charge density of the system is

e(r) =ee(r) + Ze<5(r-rn) • (4-27)

For a free atom at rest, the total Hamiltonian of the system then takes on the 
familiar form (cf. Gombås14)

(4.28)

where m is the electron mass.
For the total electric potential ç?(r), generated by the charge distribution 

(4.27), we have according to (3.15)

(4.29)

The effective Lagrangian for the individual electron, moving in the total
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potential (p, is given by (3.21), and the corresponding Hamiltonian for a single 
electron is to lowest order in v2/c2

He (4.30)

All electron states up to the Fermi momentum pF(r) are occupied, and in equilib
rium the maximum energy, Emax, that an electron can have at any point, is 
constant throughout the atom

|l + ^(mc!+/j(r))-e?>(r) = Emax , (4.31)

where we have introduced the potential

(4.32)

Combining (4.32) with the generalized Poisson equation (3.14), one may obtain 
the Thomas-Fermi equation in the Moller box.

In order to derive the reaction force on the nucleus due to the electrons, we 
note that from the potential (4.29), one obtains as a generalization of the relation
(3.17)

(4.33)

This relation is valid for any static charge distribution and may in particular be 
applied to the charge distribution £n(r) of the nucleus and the potential (pn that 
it generates

pre„(r) dffn(r)
3x

en(r)2n(r')
r — r'

Next, we write the total potential (p in (4.33) as

(4.34)

(4.35)

where <pe(r) is the potential generated by electron charge distribution ge(r). 
Subtracting (4.34) from (4.33) we obtain

jd3rßn(r) d?(r)
3x

= Ijd3rjd3r' jd3rid3 r'

(4.36)
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In this relation we may approximate the charge distribution gn(r) of the nucleus 
by a delta function in accordance with (4.27). For the reaction force on the 
nucleus from the electron distribution we thus get

jd8re.(r) dff(r)
dx

Zege r) 1
|r-rn| 22

ge(r)ge(rz)
r — rz (4.37)

Expressing the potential (p in terms of //, cf. the equilibrium condition (4.31), and 
using (4.32), we find 

where the last equation follows by partial integration. Inserting this expression 
in (4.37), the reaction force, Fx, becomes:

Fx = -”g« = -(Nm-|-)g„, (4.39)

where H is the Thomas-Fermi Hamiltonian (4.28) and N the total number of 
electrons. For the total force required to keep the atom at rest, we thus again 
obtain the expression (4.5), where B is the binding energy of the Thomas-Fermi 
atom.

§5. Conclusions and General Outlook
In the previous chapters we have verified that there is equivalence between 
inertial mass and self-energy. The study was performed in considerable detail, 
including electrostatic interactions and kinetic energies, for hydrogen-like systems 
and the Thomas-Fermi model, within both classical mechanics and relativistic 
quantum mechanics. Moreover, there was detailed equivalence, i.e. equivalence 
for each term and for each element of the interaction energy. It was not necessary 
for the treatment that the system were stable. Without doubt, these are satisfactory 
results since they imply that all terms of a calculation of self-energies have a 
separate and simple significance.
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The equivalence could be made specific in terms of the basic equation of 
motion (2.12) for a charged, composite system, gcM = qEext(rc,t). Thus, not 
only did the mass M contain detailed equivalence, but also the system, and its 
acceleration, could be represented by one point: the centre of charge rc. Higher 
order terms, like radiation damping, may afterwards be built into the above 
equation of motion. In connection with these results we showed that there is an 
error in the standard Born-Heitler calculation of self-mass from total self-force. 
As to the conventional formulae for self-momentum and self-energy, i.e. (1.8) and 
(1.9), we found that they resulted from an unwarranted variation of a constant 
term in the Lagrangian (2.15), and therefore could not be compared with the 
proper momenta and energies. It was apparent that if one kept to a Lagrangian 
formulation in describing a system, the undesirable expressions (1.8) and (1.9) 
were avoided, the need for Poincaré stresses did not arise, and detailed equiva
lence was explicit.

There is a more general background to our work, concerned with the con
sistency and aim of the description. As promised in the brief introductory remarks 
in §1, we shall now discuss this background.

We have been concerned with composite systems, and with their primary 
property, i.e. their mass. It was supposed that we can speak consistently about 
such systems. But already in the wording composite systems it is implicit that a 
simpler concept exists. In point of fact, we have an idealized concept, that of a 
particle, sometimes referred to as an elementary particle, or a point particle. From 
old, a particle is conceived as an unchangeable building stone of matter. On the 
one hand, we then visualize a composite system as a swarm of particles interacting 
with each other. On the other hand, we have to compare the properties of this 
swarm with the properties of one particle, asking for the likeness between the 
two, as well as for their difference in behaviour.

For the purpose of this comparison, consider a composite system, be it a 
molecule, a liquid drop, a crystal, or an atomic nucleus, and note the following. 
If we act upon the system by means of comparatively weak forces, the forces 
varying sufficiently slowly in space and time, then the behaviour of the system 
will be as if it were a particle. This means that it has a certain mass, charge, 
inner angular momentum, magnetic dipole moment, etc. It can possibly be 
represented as a point in space as was shown in the equation of motion (2.12), 
just in the way a particle - if we are cautious - can possibly be described as a 
point in space. By acting on the system with such moderate forces, we can measure 
the properties of the system, properties which are conserved when the system 
remains isolated. In this comparison to a point particle we need not require that 
the system be absolutely stable when isolated. We can allow it to be unstable, 
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like a uranium nucleus with a probability of fissioning, or like a liquid drop which 
may evaporate. In such cases we can think of it as having conservation within 
sufficiently short time intervals, or with a certain width of its energy. Note in 
this connection that, in the main, it is permissible to use classical mechanics as 
well as quantum theory in the description of the system, although, of course, 
quantum mechanics will give a more precise account of the physical properties.

Thus, in the limiting case of weak and slowly varying external fields, we find 
that we must be able to describe a composite system and a particle in a like 
manner. It lies near at hand to demand that we are also able to account for their 
properties in a like manner. In a way, this hypothesis corresponds to the historical 
development of particle physics where successively, molecules, atoms, and atomic 
nuclei, etc., have been described as elementary particles. But it is more essential 
that actual calculations of basic properties of systems comply with our demand, 
in so far as we are able to calculate these properties. Correspondingly, the problem 
of equivalence of mass and energy must be our primary concern.

Consider then calculations of self-energies and self-masses for, on the one 
hand, composite systems, and, on the other hand, particles. In the case of com
posite systems this calculation is prescribed: we treat its constituents, e.g., elec
trons and atomic nuclei, as elementary particles, and only their interactions and 
their motion contribute to the additional self-energy and mass. It is important 
to notice that constituents of a composite system - constituents like the above 
atomic nuclei - often can be regarded as composite systems themselves, and so 
the division into constituents can be somewhat free. This possibility of a variable 
division into constituents leads to the further expectation that each separate inter
action contribution, or kinetic energy contribution, should show equivalence. 
We described this as the demand of detailed equivalence, and we verified that it 
is fulfilled.

If we demand a systematic account, the above ought to be compared with 
self-energies for particles, such as the self-energy of an electron. The latter concept 
is not quite simple, however, and that mainly on three counts. First, the basic 
method of finding self-energies belongs primarily to composite systems, and we 
can merely maintain that the proper procedure for a supposedly elementary 
particle must not be in discord with the former. Second, the leading term in the 
electron self-energy is apparently divergent, whereas the physically observable 
parts of the self-energy, like the Lamb effect, appear only in higher order terms 
in expansions in powers of 1/c. But our primary concern, for composite systems, 
was not to evaluate cumbersome higher order terms. Third, there is an interest
ing complication because of the spin and magnetic moment of the electron; in 
order to make a comparison, one must first analyse composite systems with spin, 
or inner angular momentum. We have made this study and found that a classical 
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system with spin must be described by at least two points, the centre of motion 
and the centre of charge. An account of these questions will be given in a separate 
publication.
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Electrodynamics in Møller Box

The line element (3.6) in the Møller box corresponds to a diagonal metric tensor 
gik . If we put (x°, x1, x2, x3) = (ct,x,y,z), we have

8«» = (1 + l) ’

gll §22 §33 1 > (Al)

where g is the determinant of gik.
The field equations are derived from the action principle

<ÎS, + <5Slnt =0, (A2)

where, with general covariant notation, the contributions to the action from the 
field and the interaction are, respectively,

and

= T61^jd4x^/ZZSFikFix
(A3)

(A4)

Here the field tensor is given in terms of the four-potentials by

and hence the action Sr is invariant with respect to the gauge transformation

(A6)

where J(r, t) is an arbitrary scalar function of the coordinates.
The condition that also the action Sint be invariant against the transformation 

(A6) yields the conservation law

^(V^j')=0. (A7)

rherefore, we introduce the conserved current (£c,s) as

(A8)
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so that the total charge

(A9)

is a constant.
If a point charge qj is located at the position rx (t), the current density takes 

the form

j* = Qi dx1
dt «^r-r, (t)) . (A10)

From (A4) and (A8) we have

(All)

where A = 1,2,3.
Since the space integral in (All) represents the interaction energy, we must 

introduce the scalar potential (p and the vector potential A through the relation

so that

From eq. (A5) follows the homogeneous Maxwell equations 

(A12)

(A13)

(A14)

whereas the inhomogeneous equations are obtained from the action principle 
(A2), when the variation is carried out for fixed charge and current distributions. 
The result is (cf. ref. 12)

(A15)

The conservation law ( A7) is of course one consequence of the Maxwell equations 
(A15).

The physical significance of the potentials (p and A is expressed by the equa
tions of motion for a charged particle in an external field. These equations are 
found from the action principle

<’Skl„ + <ÎSln, = 0> (A16)
where a variation of the particle coordinates is carried out for fixed potentials.
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Here

(A18)

(A19)

mv

where we have introduced the electromagnetic fields

(A22)

(A23)

(A24)

where we have introduced the abbreviations

1

where m is the mass of the particle and q its charge. The corresponding Lagrangian 
is

u r, 1 dAE = -v”-câF>

In terms of these quantities the field action (A3) takes the simple form 

S^^Jdtjd’r^-d + xM)^).

div D = 47t£ ,

It can be convenient to express the Maxwell equations (A14) and (A15) in 
the following three-dimensional notation

„ 1 dD . 47trot H = x— + — s , c dt c ’

B = V x A.

D l + x/ÄE’

t F 1rot E = - - -^ ,

and hence the equations of motion become

d _______ mv________ ______ m(ld-x/Â)g0 I v R^l ('AQO'i
dt {(l+x/Â)2-v2/c2}1/2 {(1 + x/Â)2 — v2/c2}1/2 q\ c x r 1 J

div B = 0 ,

(A26)
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Appendix B

Static Potentials in Moller Box

In this appendix we derive the potential generated by a charge at rest in the box. 
By introducing (A21) and (A25) into (A24), one obtains the generalized Poisson 
equation for the potential (p,

(Bl)

where the charge q! is at rest at the position iy . In the text we only use the solution 
of this equation to first order in 1/A as given by (B12). But for the sake of com
pleteness we here give the exact solution of (Bl), subject to the boundary condition 
that it vanishes at infinity in the box. This solution is a somewhat complicated 
analytical expression, which can, however, be given a simple geometrical repre
sentation.

Fig. 4. Geometrical construction 
of potential and field from 
fixed charge in the Møller box. 
The x-axis in the box is chosen 
in the direction ofg0. The thick 
line, at x = — A, represents 
the bottom of the box. i.e. the 
region below this line does not 
belong to the box. The circle is 
drawn through the charge 
point P] and the field point P as 
well as through their mirror 
images, P( and Pz beyond the 
bottom of the box. The field 
strength E is tangential to the 
circle at the point P.

Let Pj represent the point in which the charge is located and P the field point 
(see Fig. 4). We draw a circle through these two points and their mirror images, 
P( and Pz, beyond the bottom of the box, at x = — A. Denote the vectors from ?! 
to P and from Pj to P by d and D, respectively. We shall prove that the solution 
of (Bl) may be written

where d = |d and D - |D .

(B2)
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The right hand side of (B2) tends to the constant qJA at infinity and at the 
bottom of the box. It is seen from Fig. 4 that d and D are given by

d = {(x —Xj)2+(y —yi)2+(z —z,)8}1'2 (B3)

D = ((x + A+x1+A)2+(y-y1)2 + (z-z1)2!,'1!. (B4)

In order to show that (B2) is a solution of (Bl), we observe that the Laplacian 
acting on d/D becomes

= È'^d + ddi + 2(Vd).(vl) = -4xdd(D> + CT5 - ^ + 4l'(j‘LyA'g > (B5)

and similarly
. D A i 1 L) 4(xi + T.)2

+ dD-d3 - Dd3 ■ (B6)

Furthermore,

1 1 d__ 1 Zx~xi _ i x + Â + x1 + Â\ 
Â + x dx D —Â4-x\ dD a D3 /’

(B7) 
1 8 D  1 /x T Â T x1 4~ 2 „ (x T Â) — (xx T \

7 + xdx d 2 + x\ di) d3 /’

Finally, making use of the relation

D2 —d2 =4(x + A)(X1+A) ,

we obtain

B8)

B9)

Since <5(D) vanishes everywhere within the box, we have verified that, apart 
from an additive constant, (B2) is the solution of (Bl) with the desired boundary 
condition. It is easily seen that the electric field E at the point P is tangential to 
the circle and of magnitude

E(P)=q1(l + ^)(J5-Il5). (BIO)

Incidentally it may be remarked that a light ray, sent from the point P, to the 
point P, travels along the circle shown on the figure.

In order to obtain the potential to first order in 1/7. we expand as follows
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D = 2A + xj4-x... .

Hence the potential becomes 

(Bl 1)

(B12)

which is the form used in the text.
The above result for the potential may also be derived by transforming the 

potentials, generated by a charge in hyperbolic motion, from the inertial frame 
to the Moller box and performing a gauge transformation. The potentials in the 
inertial frame were originally derived by Born10.
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Appendix C

Klein-Gordon Equation in Møller Box

Let K(t) denote the particular inertial frame which coincides with the Møller 
box at time t. In this frame, the Klein-Gordon equation for a spinless particle 
of charge q and mass m in an external potential A may be written as

(p, — S jt,) (p1 — S jt’)^K(„(T) = m2c>K,„(T) , (Cl)

where ^K(t) (T), the wave function in the frame K(t), is a scalar quantity. With 
the identification

(C2)

and imposing the Lorentz condition we obtain

(-h2 D-zSiWjlp + ^X,a)fki.,(T) = m2cVK,„(T). (C3)

We now notice that the wave function in the Møller box y/(t) is equal to the wave 
function ^K(t)(T)

F(t)=FK(t)(T). (C4)

Moreover, since <//K t) *s a scalar, the product A1 /3X1 is an invariant. 
Therefore the Klein-Gordon equation in the Møller box is simply obtained by 
expressing this invariant and the d’Alembertian in non-Euclidean coordinates. 
For the latter operator we have the general expression (cf. ref. 12, §86)

□ = (C5)

With the metric (Al) in the Møller box, this operator becomes

n  ___ i i a2 / , i a A
D (l + x/Â)2 c2 9t2 r + Â + x3x/

^(l-2xM)l^-(j + l^), (C6>

where the last expression is valid to first order in 1/Â. We shall only consider 
the case of a static potential in the Møller box, i.e. Å = (cp,0,0,0). Hence we 
obtain

= = (C7>
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Similarly,

A1 A, = g00 A20 ~ ( 1 - 2x/2) (p2. (C8)

Multiplying eq. (C3) from the left with the factor (l + 2x/2), we obtain to first 
order in 1 /A

|'h? å5 -7lih'l£ + e **+(1+2x)(J+x 0*'=(1+2x)m!c!(C9)
or

(ih/t -q«>)v={nr,'(l+2^)-(l+2j)hiJ-^^. (CIO)

It is convenient to rewrite this equation in a more symmetric form by introducing 
an auxiliary function

1
(l + x/2)1/2 (Cll)

Thereby we get from (10), again to first order in 1/2,

(ih^-q^¥/={m2c4(l+2j)+cp(l + 2j)cp}¥', (C12)

where p = — ih V. We note that to this order eq. (Cl2) may be written 

(ih|f-qÇ>)ï¥'=H;ï', (C13)

where Ho is given by (4.6).
To the Klein-Gordon equation belongs a conserved four-current density (ß,s). 

According to (Cl 1) it is to first order in 1/2 given by

(C14)

1’hesc quantities obey the continuity equation 9ß/9t = — divs because of (Cl2).
Consider a hydrogen-like system, where a particle of charge q2 moves in the 

potential (p given by (3.15). The demonstration of equivalence in this case dillers 
slightly from the derivations in §4 for two reasons. First, the wave function 
belonging to a stationary state of the atom is not an eigenstate of a Hamiltonian 
as in the cases studied in the text. Second, the conserved density is not | V721, but 
is given by (C 14).
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Ina stationary state we have

¥0 x, t) = V'(x) e h

Thus the density q takes the form

P =

(C15)

(C16)

where ¥ satisfies the equations Cl2) or (Cl3) with ih 3/9t replaced by E.
We assume that the integral of the density Q. in (C16), is normalized to unity, 

and thus the charge density of the particle is equal to q2£ir2). Hence we get for 
the expectation value, Fx, of the reaction force from the particle on the charge 
centre q! situated at the position r, = 0

d3r2qiø
fd(p(r};r2)\

M ax, )q* 9x

Noticing the relationships

9x2 / ’

d3r2¥7* _L hq 1
3x2’ 2m2c2J

= - ||d3r2^* (E —q2ff)2 
m2c2

d3r2^ r2)(E-q2p) ,

(C17)

(C18)

we obtain equivalence in (Cl7)
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Synopsis
Let Fq be a finite field and let Fq[x] denote its polynomialring. Let ACFJx] denote a sequence of 
polynomials and A(n) the counting number Card {f 6 A|3f S n} where 3f denotes the degree of f.

A sequence ACFq [x] is said to be an asymptotic basis of order 2 if all polynomials of sufficiently 
high degree lie in A + A = 2A and an asymptotic complementary sequence is defined analogously.

Let further P denote the sequence of irreducible polynomials in Fq[x]. The subject of this paper 
is to translate two principal results of a chapter of the book of H. Halberstam and K. F. Roth to 
the case of a polynomialring over a finite field.

We shall use an idea of Erdös to make the space of polynomial sequences into a probability 
space.

We then prove the following two existence theorems by showing that the property one looked for 
holds with probability 1.

There exist:
— a thin asymptotic basis of order two
— an asymptotic complementary sequence to P such that the counting number B(n) << n2.
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§ 1. Introduction .

Let Fq be a finite field of q = pm, in e N elements and let Fq[x] denote its 
polynomialring. The degree of a polynomial is denoted df. We denote by sign f 
the leading coefficient of f. The absolute value of a polynomial f is defined by 
|f| = q3f. We can assume that the polynomials in Fq [x] are arranged in lexico
graphical order (= < ) based on an arbitrary ordering of Fq.

Let A C Fq [x] denote a sequence of polynomials and A(n) denote Card 
{feA|9f n}. Further let P denote the sequence of irreducible polynomials 
in Fq [x].

We denote by rf(A) the number of representations of f in the form:

f=f' + f", f',f" e A, df'=df, 3f" Of. (1.1)

Also let Rf(A) denote the number of representations of fin the form:

f=p + f', p e P, f'eA, 9p = 9f, sign p = sign f. (1-2)

Definition 1.1.
A C Fq [x] is said to be an asymptotic basis of order 2 if all polynomials of 
sufficiently high degree lie in A + A = 2A.

Definition 1.2.
For a given sequence A G Fq[x] the sequence B is said to be “complementary” 
to A if the sequence A + B contains all polynomials of sufficiently high degree.

The subject of this paper is to translate two principal results of a chapter of 
the book of H. Halbertstam and K. F. Roth to the case of a polynomialring over 
a finite field.

Discussion and introduction of the first result.
The following question is a direct translation to the polynomialring Fq [x] of the 
same question raised by S. Sidon (see [1]) concerning the existence and nature 
of certain integer sequences A whose representation functions rn (A) are bounded 
or in some sense exceptionally small.
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Does there exist an asymptotic basis A C Fq [x] of order 2 which is economical in 
the sense that, for every e > 0

By elementary methods we have proved the existence of a subset A of Fq [x] which 
is a basis of order two and have zero-density (see [2]).

By probability methods we shall obtain theorem 1.1 below which is mush 
sharper than is required for an answer to the question above.

Theorem 1.1.
There exists an asymptotic basis of order 2 such that

3f<^ rf (A) << df for large 3f. (1-3)

It should be remarked that the proof of theorem 1.1 is based on Bernstein’s 
improvement of Chebychev’s inequality (see the book of A. Renyi: Probability 
theory [3]).

Discussion and introduction of the second result.
By elementary methods we have proved the existence of a complementary 

sequence B to P such that

B(n)<n3 (see [2]) (1.4)

By probability methods we shall prove that we can reduce the factor n3 of the 
right hand side of (1.4) to n2.

The proof of this result is rather complicated and requires beside the pro
babilistic machinery also some deep results concerning the distribution of ir- 
reducibles in the ring over a finite field. (See the paper of D.R. Ilayes and the 
work of Georges Rhin [4], [5]).

Further is should be remarked that the definition of Rf(A) is essential and will 
affect the result. If for instance we let Rf(A) be the number of representations 
of f in the form f = p + f', p e P, f'e A, 3p < 3f we would not by this method 
obtain the estimate n2 but only n3 in (1.4). We state the theorem as follows.
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Theorem 1.2.
Let P denote the sequence of irreducible polynomials in Fq[x]. There exists a 
“complementary” sequence such that the counting number

Finally we remark that these theorems correspond to results obtained by Erdös- 
Renyi for integer sequences (see [1]) and can be considered as their directly 
translations to the polynomialring Fq [x].

I am very grateful to professor Georges Rhin (Metz, France) to have com
municated his work
“Repartition modulo 1 dans un corps de series formelles sur un corps fini”.

Also I would like to thank professor Asmus L. Schmidt, Copenhagen for his 
comments and very helpful instruction.

2. Probability methods on the space of sequences 
of polynomials in Fq [x]

We shal use an idea of Erdös to impose a probability measure on the space of 
polynomial sequences such that (in the resulting probability space) almost all 
polynomial sequences have some prescribed rate of growth.

From now on we use w to denote an (infinite) subsequence of Fq[x]. Let Q 
denote the space of all such sequences w. We shall need the following variant of 
a theorem from Halberstam and Roth’s book [1] chapter III.

Theorem 2.1.
Let

<PB|g e FqM} (2.1)

be real numbers satisfying
0£p,Sl (geFJx]) (2.2)

Then there exists a probability space (Q,S,P) with the following two properties:

For every polynomial g e Fq [x] the event 
B<g) = {w : g e w} is measureable and P(B(g)) = pg .

(2-3)

The events B(g), g e Fq[xJ are independent. (2-4)
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Further we assume that the sequence {pB} of probabilities (introduced in theorem 
2.1) satisfies the following conditions:

0 < Pg < 1, g e Fq[x]. (2.5)

If Sg = Sf then pg = pf. (2-6)

pB 1 0 as 3g -> oo . (2-7)

We denote /g(w) the characteristic function of the event B(g). Then (2.4) is 
equivalent to saying that /g,geFq[x] are independent (simple) random var
iables. Further we shall need the following definitions.

Definition 2.1.
Let w be a constituent sequence of the space Q, and let f be a polynomial. We 
denote by w(f) the counting number of the sequence w, so that w(f) is the number 
of polynomials of w which do not exceed f. We denote by w(n) the number of 
polynomials of w which degree do not exceed n. Furthermore let rf(w) and Rf (w) 
be as in the introduction.

Definition 2.2.
Let x: Q —> R denote a random variable. We denote by E(x(w)) the mean of 
x(w) and by V(x(w)) the variance of x(w).

Dtf/mzVzon 2.3.
S = Ap’, i = 1,2,3,4,2p1 = 2f (2.8)

dtp < df

Obviously we have:

w(f) = Card{g e w|g = < f} = Z Xg(w) (2.9)
g=<f

w(n) = Card {g G w|Sg T n} = 7) £g(w)
3ggn

(2.10)
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rt(w) = S Zç,Zf-<p(w) 
dtp <. 3f

Rf(w) = 2 Zf-p(w) 
peP

3p=3f
sign p=sign f

(2.11)

(2.12)

§3. A limit distribution for rf(w)

Theorem 3.1.
Let us choose a sequence {pr} of probabilities such that

V (rf) —> oo as df —> co

Then we have for — oo < x < oo :

lim P -W= 
af->oo \vV(rf)

< xj = O(x)

(3.1)

(3-2)

where O(x) denote the standard form of the normal distribution function.

Proof.
By the central limit theorem (see [3]) we need only to prove that the Lyapunov 
condition is satisfied.

That is :

Ve> 0:1
E agof

ZUf-g-PePf-g
— Af<2) (3-3)

as 0f oo

We obtain :

ZgZr-g pgpt-g

— (( 1 — pgPf-g)3P(B(g) n B(f_g)) + p|p3f_gP(C(B(g) n B(f-g)))) 
(At-V2>)2

E
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--------3 (pgpr-8 - 3pgP?-g + 4p3gp?_g - 2p4 p4_g)
(Af-V>)2

Hence we have :

S E
3g< 3f

XgZf-g pgpf-g I Âf-3Â*2>+42<3)-2Â*4)
(3-4-)

By (3.1) and (3.4) we have (3.3) and this proves the theorem.

Application of theorem 3.1.
We will prove that V(rf) —> oo as 9f oo in the case:

Pg =

1
2 3g < H

9g> h k2_65 logcj
(3-5)

Let Y denote a random variable such that

P(Y-k)=^ fork-1,2,..

We need the following lemmas:

Lemma 3.1.

V^Vq”

Proof. n-i n_!

First we note X x/k V^q1' = X \/n —k\/qn_k 
k=l k=l

Then we have :

1___
\/n \/qn

n—1 n—1
X x/ky/q^ = X 
k=l k=l

1 \/n — k
\/q-l \/n P(Y = k)
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1 p iVmax (0,n — Y)\ 1
v^-l \ VT. / ~" v^-l

since \/max (0,n — Y) 
“TT“ -> 1 and

Vn. \/max(0;n-Y; 
x/n < 1 •

Lemma 3.2.
Âf ~ k2 (\Æ[ + l)9f as 9f -> oo .

Proof.
We put 9f = n
FJence we obtain:

A = kî(q-1) ___ 1
x/nx/q"

fzv^x/q* +0(1)

Then by lemma 3.1 :

— ^kî(q-l) n
1

Vq-l
as n —> oo

and the lemma is proved.

Lemma 3.3.
Â<2) -> 0 as 3f-> oo

Proof.
Obvious.
Then by lemma 3.2 and lemma 3.3

(3.6)

(3-7)

V(rf) = Af — Äf2 ’ —> co as 91' oo
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§4. The law of large numbers for w(f)

By a variant of the strong law of large numbers (see [1]) we obtain the following 
theorem.

Theorem 4.1.
If

and

S E(Zg) = Z pg = + co
geFq[x] g6Fu[xJ

Tl)

Then with probability 1

s
feFJx]

V(Zt)
E2(w(f)) < + oo

r w 0 i hm ——ryrr = 1 af^oo E w f)

(4-2)

(4-3)

Applications of theorem 4.1.
We define:

1 3g =4
(4.4)

From this definition follows

Lemma 4.1.

E(w(n)) = X
3g = n

pg ~ y (logq) n2 as n -> oo

Lemma 4.2.
We have with probability 1
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w(n) oo (4.5)

where {pg} is defined by (4.4).

Proof.
By lemma 4.1 the conditions (4.1), (4.2) are satisfied since

v V(Zf) V - V b-3 
E2(w(fn k4 q <0°

f v ■ 11 k=l k=l

Then by (4.3) we have (4.5).

§5. Some results concerning the distribution of irreducibles 
in the ring over a finite field

Let M denote the multiplicative semigroup consisting of the polynomials f with 
sign f = 1 in the ring Fq [x].

Let B = xn + bn-xx”-1 +... + bn_kxn_k + ... T b0 be a polynomial in M. The 
field elements bn_!, bn_2,..., bn_k are called the first k coefficients of B, it being 
understood that bj = 0 if i < 0.

Let k be a non-negative integer, and let a sequence of k field elements be given. 
Let H be a polynomial in Fq [x] and let K be a polynomial prime to H. We denote 
by h the degree of H, and O(H) denotes the number of polynomials in M of 
degree h and prime to H.

Let 7i(n,H,k,K) denote the number of irreducibles in M of degree n which 
(1) are congruent to K modulo H and (2) have as first k coefficients the given 
field elements, then by comparing results in [4] and [5] we obtain the following 
explicit estimate.

.-r(n,H,k, K) qn 
nqkO (H)

n
^(k + h + l)q2 (5T)

In the estimate (5.1) we put

H = x, K = ß0 # 0 (e Fq), then SH = 1, (x,/%) = 1 and O (x) = q — 1.

Then we have the following estimate
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%(n,x,k, ß0) qn 
nqk(q — 1) < (k + l + l)q2 (5.2)

(5.2) implies the following lower bound estimate

7t(n,x,k,/?0) > qk(q_i) ~ (k + 2)q2 (5.3)

We denote by 7i(n,k) the number of irreducibles in M of degree n and with the k 
first coefficients being fixed. Then by (5.3) we obtain the lower bound estimate 
we need for the proof of theorem 1.2.

%(n,k) = S 7r(n,x,k,/30) >
Ä>eF*

(q-l)(k + 2)q2 (5.4)

§6. Proof of theorem 1.1 §1

We prove theorem 1.1 by establishing theorem 6.1 below.

Theorem 6.1.
Suppose that Q is the probability space generated in accordance with theorem 
2.1 §2 by the choice (3.5) of the probabilities pg. Then with probability 1 :

3f<S rf(w) <C 3f for large 9f. (6-1)

Proof.
We have {ZœZr-<Jdtp < 9f] are independent random variables such that: 

E( S z^Zf-J = E(rf) = f
\3g < 81 )

V(rf) = ;.t-z'2’

Vy:3^Of |Z9,Zf-ç3-E(Zç?Xf-93) I 1

1
2 ^-r 

Weput/' = vW 

large 3f. Hence by Bernstein’s improvement of Chebychev’s inequality (see [3] 
p. 387) we obtain the following result:

. Then by lemma 3.2 and lemma 3.3 §3: // \/V(rf) for



Hence by (6.2), (6.3) and (3.6) we have for large 3f:

p(|r,-Ar|>U,)Ê2e
Â, _ f 1 k?\/qaf\ _5
13 2q 13 -* = 2q 4 0f (6.4)

We put Ef = {w : I rt — Âf I
Then by (6.4) :

S P(Ef)<00 
feFJx]

(6.5)

Hence by the Borel-Cantelli lemma, with probability 1, at most a finite number 
of the events Ef can occur or equivalently:

P({w: |rt — ÂfI < i Âf for 3f >n0(w)}) = 1 (6.6)

(6.6) implies since Ât ~ kf (\/q + 1 ) 9f that :

P({w : 3f<^ rf(w) << 3f for large df}) = 1 (6.7)

This completes the proof of theorem 6.1.

7. Proof of theorem 1.2 §1

We prove theorem 1.2 by establishing theorem 7.1 below.

Theorem 7.1.
Suppose that Q is the probability space generated, in accordance with theorem 
2.1 §2 by the choice (4.4) §4 of the probabilities pg. Then with probability 1 :
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w(n) << n2

Rf(w) > 0 for 3f > n0 (w)

(7.1)

(7-2)

Proof.
By lemma 4.2 §4 we obtain (7.1). To establish the theorem, we must prove that, 
with probability l,Rt (w) > 0 for large df. By the Borel-Cantelli lemma we need 
only show that

2 P({w: Rf — 0}) < oo , (7.3)
feFJx]

and in view of (7.3) it suffices to establish the existence of a number d > 0 such that

P({w:Rf = 0})< q ~3f(1+d). (7.4)

Let f be a fixed polynomial of degree n and sign f = a (4= 0). We have the following 
estimate

P({w: Rf(w) = 0}) = Il P({w:/f_p = 0}) 
peP

Sp=0f
sign p=sign f

11(1— pf-p
peP

9p=3f
sign p=sign f

np(CB,f-p)) =
peP

9p=3f
sign p=sign f

(7-5)

l 2k
Il e_pf-p Si , 0 < £ < 1
k= I 0(f—p)=n—k

To obtain the estimate (7.4) we need first to establish a lower bound estimate 
for 1 and secondly an upper bound estimate for

9(f—p) =n—k

e_pf-p X 1 •
3(f— p)=n—k

Let
f = axn 4- an_,xn 1 + ... 4-an_kxn k4-...4-a( 
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p = axn + ßn_1xn 1+ ... + /3n_kxn k + ... + ß0

8 (f— p) = n — k =>

ßn —1 an —J

ßn—k+1 = an-k+1

ßn — k 4s an — k

By (5.4) we obtain

S 1 (7.6)
3(f— p)=n—k

= Card {p G P|9p = n; signp = a; /?n_i = an_i, i = 1,2,... k — 1 ; ßn_k 4= an_k}

= Card{p g P|dp = n; sign p = 1 ; yn_j = ^1, i = 1,2,... k — 1 ; yn-k 4=

> (q-l)(^-(q-l)(k + 2)q7)

(7.6) implies

e_Pf-P Z 1 e-Mq-l)2—^ [l-n(q-l)(k+2)qk-y. (7.7)
ø(f— p)=n—k

Now take any £x : 0 < < 1. Then for every k : k = 1,2,... ( 1 — fi) j we have

n(q — 1) (k + 2)qk~! «i if n > No (e, ei,q). (7.8)

Then by (7.7) and (7.8)

e-p-P Z 1 e-Mq-i)U-k) (i-£1) if n > No(«, £1;q) • (7.9)
3(f— p)=n—k

By (7.5) and (7.9) [|(i-e)l
P({w:Rt = 0}) e-Mq-i)U-*i) Z (7.10)

k=l

Take e = \Z^2. — 1 ( < 1), then we obtain
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To obtain (7.4) with d = 1
4 wc need only choose in (7.12)

(1 + 0)4 log q  20 log q 
(q-l)(l—£i) 3 q-1

and this proves the theorem.
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Synopsis
A study has been made of the etching characteristics of fission fragment tracks in certain zeolites, including 
chabazite, stilbite and heulandite, collected from the Upper, Middle and Lower Series basalt in the Faeroe 
Islands. Etching conditions with respect to annealing temperature have been standardized and optimized, 
with special attention being given to chabazite, and annealing experiments have been carried out on this 
mineral in order to derive the appropriate correction curve for application to igneous activity over geological 
time. It is shown that chabazite, employed as a solid state detector, registers fission fragment tracks 
anisotropically. Studies of the influence of both annealing the sample and varying the etchant temperature 
reveal no improvement in the degree of isotropy. Nevertheless the fission track method is applicable to the 
dating of chabazite in particular, and almost certainly for the dating of zeolites in general. Fission track 
dating of the Faeroe Islands yields a spread of corrected ages from 41.6 ± 1.1 X 106 y. to 55.4 ± 2.6 X 106 y., 
which are substantially less than ages obtained previously using radiometric methods.

Fission track ages are also reported for the minerals zircon, sphene and apatite, and for a few micaceous 
minerals - particularly phlogopite — collected from alkaline igneous intrusions in East Greenland (the 
Kangerdlugssuaq and Gardiner intrusions, and the island of Aliuarssik). The correction curve for phlogopite 
has been determined in laboratory annealing experiments. Extrapolation of the experimentally determined 
temperatures for annealing suggests that a temperature of 195°C will erase all tracks in ~106 y. The annealing 
data is therefore interpreted in terms of the paleoisotherm of the fission track clock in the mineral.

The results obtained for the Faeroe Islands indicate a relatively short time span for the volcanic activity, a 
general conclusion which is not at variance with earlier radiometric studies, and which is consistent with the 
results for contemporaneous East Greenland lavas. The geological histories of the three selected areas of East 
Greenland, and differences between them, are discussed in the light of the fission track ages uncovered. For 
the Kangerdlugssuaq intrusion in particular it is proposed that there is clear evidence for strong doming and 
regional uplift, and that this was parallelled by a similar behaviour at the same time, although on a less grand 
scale, in an extensive area west of the Faeroe islands. The linkage in time of similar activity in the two 
geographical zones has implications in the dating of plate motions and for continental break-up of the North 
Atlantic province.
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I. Introduction

The ways in which fission track (FT) procedures are normally applied in geology to 
determine times of mineral crystallization and ages of rock strata are now well 
understood. The general method itself has seen wide acceptance; there have been 
applications in such diverse disciplines as archaeology,1-3 cosmology4-12 and biolo
gy13-16. Since its introduction by FLEISCHER et al.17 a growing number oflaboratories 
have employed the FT technique in a variety of interdisciplinary studies.

This rapid growth in the importance of the FT technique is due in part to the 
maturity which certain of the experimental procedures have reached, not only in 
straightforward dating of igneous and metamorphic events,18-23 but also in strat
igraphic studies by the dating of ash layers,24,25 the elucidation of rock uplift history,26-28 
and in the measurement of uranium, thorium and plutonium concentrations in various 
materials of both terrestrial and extraterrestrial origin. There have also been surprising 
applications in such unexpected fields as paleozoology29 and botany.30,31 Moreover, 
there are hopes that FT methods may hold the key to a solution of some of the most 
urgent problems confronting geochronology and cosmochronology today.

In this paper we describe in particular reconnaissance studies of the fission track 
dating of zeolites, a complex group of tectosilicates which is, for example, widely 
developed in basaltic rocks subsequent to their emplacement by later stage processes. 
Zeolites have assumed increasing importance in recent years due to a rapidly expand
ing interest in hydrothermal systems and in detailed studies of oceanic floors, as a 
consequence of the demonstration that typical volcanic areas have been permeated by 
huge quantities of hot water of meteoric origin,32 and because of the need to understand 
hydrothermal processes in connection with the exploration and utilization of geother
mal energy. The chemical etching conditions have been standardized by investigations 
of the temperature dependence of the etching behaviour for certain zeolites (in particu
lar the minerals chabazite, stilbite and heulandite) and, for chabazite, have been used 
to study the track recording and retention characteristics in some detail, with particu
lar reference to fossil hydrothermal systems in the Faeroe Islands. In order to check the 
general reliability of the method on zeolites, samples from the Faeroe Islands were 
selected in such a way that for some of them comparison could be made with age 
estimates established on geological grounds. Further experiments have been made to 
determine the calibration curve relating track length shrinkage with track density 
reduction — an important element in all fission track geochronology

Fission track ages are also reported for minerals in alkaline igneous rocks from the 
Tertiary deposits of East Greenland, since this zone has held a key position during 
formation of the Noth Atlantic, and since both volcanic and epcirogenic events arc 
better displayed here than in any other geographic area around that sea.
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II. The Geology of the Faeroe Islands

The Faeroe Islands lie at the extreme northwestern edge of the European continental 
margin which consists here of a series of banks extending from the Rockall Plateau 
northwards to the Faeroe Plateau, a distance of about 1000 km. These banks are 
separated from the European Shelf by the Rockall trough and The Facroe-Shctland 
Channel, a deep water area of partially unknown structure. The banks themselves are 
underlain with continental material and arc therefore believed to be microcontinents 
detached from the European shelf by ocean-floor spreading. Indeed, inclusion of the 
Rockall and Faeroe Plateaus in pre-drift reconstructions33 considerably improves the fit 
of continental models from which they have been omitted.34

The Faeroe Islands themselves cover about 1,400 km2 and are the crosional remnants 
of a Lower Tertiary basaltic plateau which may once have been as extensive as 24,000 
km2, the area of the insular shelf. Fhc basalts are similar in structure, composition and 
age to those of East Greenland and have an exposed thickness of about 3,500 m, 
although the top and bottom of the sequence are not seen. Our knowledge of the 
geology of the islands stems mainly from the work of RASMUSSEN and NOE- 
NYGAARD,35’36 and from that of WAAGSTEIN,3' who also studied the insular shelf 
and the neighbouring banks. The exposed sequence is divided into three scries; the 
Lower, Middle and Upper Basalts. The Lower Basalts (Fig. II.1), consist almost 
exclusively of aphyric and slightly plagioclasc-phyric, olivine-poor, lava flows with a 
thickness averaging about 20 m. I hey arc separated from the Middle Basalts by a 
distinctive horizon of volcanogenic sediments and coal, while the Middle Basalts begin 
explosively with the deposition of up to about 100 m of pyroclastics (a tuff-agglomerate 
zone). Typical Middle Basalts differ from the Lower Basalts in being thin pahoehoe 
units averaging about 2 m in thickness. Most are plagioclase-phyric, but olivcne-phyric 
and aphyric flows, and a single orthopyroxene-phyric flow, also occur. 'Fhc base of the 
Upper Basalts (Fig. 11.2) is marked by a prominent group of olivinc-phyric and 
aphyric flows which have been shown to form very flat shield volcanoes of great areal 
extent. The Upper Basalts are a comparatively variable group but arc typically 
characterized by olivine-phyric, LIL-elcment depleted flows which are best developed 
in the northeastern and northern parts of the islands. There is still evidence for 
unconformities in the Faeroe lava sequence and it is believed that jointing, faulting and 
gentle warping are subsequent to the extensive phase. Many dikes and sills cut the lavas 
and these intrusives also seem largely to postdate major Basaltic flows.
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Fig. II.l. The western 
side of Kunoy seen from 
Kalsoy in The Faeroe Is
lands. The lavas have a 
very shallow dip and the 
base of the Upper Basalts 
is at the first thick horizon 
going up to the top. 
Mountains are up to 
about 800 m (A. Noe- 
Nygaard).

Fig- II .2. Lower Basalts 
on Mykinesholmur in the 
Faeroe Islands showing a 
relatively steep easterly 
dip. The cliff is just over 
100 m (A. Noe-Nygaard).

III. The Geology of East Greenland
The Tertiary rocks of the east of Greenland (Fig. I II.l) originally covered an area of 
some 100,000—200,000 km2. They were deposited in the Lower Tertiary in connection 
with continental break-up in the North Atlantic and, as such, arc part of the North 
Atlantic igneous province whose continuing activity still is evident in Iceland. Rock 
types in East Greenland include volcanics which are largely voluminious plateau 
basalts of tholeiitic composition, and a wide spectrum of intrusives, including layered 



8 40:13

gabbros (e.g., the famous Skaergaard intrusion), granites, syenites and nepheline 
syenites (e.g., the Kangerdlugssuaq intrusion) with minor amounts of others. Recent 
reviews of the province have been published by one of us,38 and by other workers.39-41

Briefly, the evolution of the province was as follows. After a long period continental 
conditions emerged, and subsidence with accompanying sedimentation began towards 
the end of the Cretaceous in the Kangerdlugssuaq area. In more northerly areas 
continental rifting had been active throughout most of the Mesozoic. Outpouring of 
basaltic lavas, mostly of tholeiitic character but some picritic, subsequently com
menced and filled up the basin rapidly so that, although the first lavas are submarine, 
the bulk of the plateau is subaerial. There is, however, evidence that subsidence still 
continued but not at a rate rapid enough to keep pace with the volcanic accumulation. 
The total thickness of basaltic products is thought to have locally attained some 7 km.42 
The basalts themselves were erupted via a fissure swarm parallel to the present coast 
line, where dike swarms occur which arc sometimes so intense as to make up 100% of 
the total outcrop. Associated with this extensive activity the newly forming continental 
margin became attenuated and flexured in the direction of the embryonic ocean floor. 
Numerous gabbroic bodies were emplaced in and close to the dike zone. Radiometric 
dating results allied with biostratigraphic evidence43,44 indicate that these events took 
place around the Palaeocene-Eocene boundary (53—54 m.y ago).

While the magmatic activity along the coast was almost exclusively tholeiitic, areas 
inland experienced minor alkaline activity characterized by nephelinites similar to 
those of the African continent. After a few million years of relative quiescence sycnitic 
bodies were largely emplaced in the Kangerdlugssuaq area. Brooks45 has suggested 
that this phase here was accompanied by a major crustal doming event (fig. 111.2) 
which he delineated. At the present erosional level, syenites and related rocks arc the 
most voluminous Tertiary bodies exposed and, apart from minor dike swarms, repre
sent the final stages of local magmatism. Conversely, in the Kialincq (67°N) area, a 
number of felsic plutons were emplaced at about 35 m.y60-62 and, to the north, the 
Werner Bjerge pluton (72°N) was active at around 30 m.y.46-49

IV. The Etching Behaviour of Damage in Zeolites with Particular 
Reference to Chabazite as a Track Detector

The fact that solid state track detectors (SSTD’s) can tolerate large neutron doses 
without detectable deterioration makes them uniquely suitable for measuring the 
concentrations of certain heavy elements in specific samples. Presently glasses, plastics 
and a limited number of single crystalline materials are being used in applications of 
FT methods,50-52 and in addition there is ample evidence that SSTD’s are not only the
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Fig. I II.l. East Greenland 
basalts inland from the 
northern part of the 
Blosseville Kyst. They re
main relatively un
disturbed and have only 
been subjected to regional 
uplift. Tops of the moun
tains in this area are very 
close to the original top of 
the basalt pile (Geodetic 
Institute, Copenhagen).

Fig. III.2. Inner part of 
the Kangerdlugssuaq- 
Nordfjord (Greenland) 
extending into the left, 
with the Kangerdlugs- 
suaq Gletscher Snout at 
the bottom. The plateau 
to the distant left is an 
exhumed Pre-Tertiary 
peneplain which was cov
ered by basalts. To the 
right is the Kangerdlugs- 
suaq dome carved in up
lifted Precambrian 
gneisses.

best integrating type of detector for swift heavy charged particles, but can be used for 
fast neutron detection.53-56 Studies are also being made of the effects of high fast neutron 
doses on track registration generally and on the thermal stability of tracks. Crystalline 
detectors have been used less frequently than glasses and plastics in part, at least, 
because they are more temperature-resistant. Moreover, the bulk etch rate velocity Vg 
examined by various investigators in crystalline detectors such as bronzite,57 feld
spar,58,59 sphene,60 and labradorite,57 has been shown to be anisotropic.
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Experiments were first carried out to determine the effect of etching at various 
temperatures, the effect of heat on the anisotropic properties of chabazite used as a 
track detector, and a systematic search made for a suitable etchant to reveal tracks in 
the zeolites chabazite, stilbite and heulandite. Track recording and retention charac
teristics for chabazite, however, will be described in detail. The FT etching efficiency of 
a mineral is defined as that fraction of the total number of fission fragments to have 
crossed a given surface which is visible in the optical microscope. If the rate of chemical 
etching is very much greater than the general rate of etch, then due to the fact that the 
etchant penetrates along the full length of the damage trajectory, the majority of tracks 
are revealed as hollow cylinders, and the efficiency is high, as is the case with chabazite.

Our investigations have concentrated upon the suitability of the solvents NaOH and 
KOH for chabazites in particular. Homogeneous, inclusion-free chabazite crystals 
from Vâgar were selected for this study. Samples were prepared by first using normal 
grinding methods to the finer stage, and then polishing with diamond abrasives 
ranging from the 8 p to the 0.5 p grades, after which the samples were divided into two 
groups. To determine the appropriate etchant for chabazite, samples from the first 
group were etched in boiling NaOH for times varying from a few minutes to several 
hours, the density of spontaneous tracks due to natural fission being measured at 
discrete intervals. We found neither the track geometry nor the variation of track 
density with time to be satisfactory. After trying a number of other solvents, a 
satisfactory etching of the chabazite specimens was finally accomplished using KOH 
(3g in 4g H2O). Again the samples were etched for from a few minutes to several hours 
and the track density measured after each time step. It is a clear characteristic of KOH 
that, compared with NaOH, this etchant gives an almost uniform distribution of 
tracks, with better defined contours. The results (Figure IV.l) indicate that with 
NaOH a maximum in track density is reached, followed by a slow decrease due to 
progressive chemical removal of surface layers of the crystal. For KOH, a plateau, 
which is reached rather quickly, remains invariant with time (Figure IV.2).

The second group of samples was annealed for 2 hour at 540°C (further details are 
given in section V) in order to erase all spontaneous tracks. Artificial tracks were then 
created using a 252Cf source in a 2ji geometry and chemical etching experiments carried 
out on two sets for different times, using NaOH and KOH. Again, in the case of KOH, 
a constant track density plateau was reached after a short time (Figure IV.2). These 
different relationships for various etchants arc due to fundamental differences in the 
velocity of etching along the tracks (Vt) relative to that for the bulk solid (V ). The ratio 
Vt/V is high for KOH in the case of chabazite. It is much lower for NaOH.

A few samples of chabazite were annealed at 540°C for two hours, mounted in epoxy 
resin along the cleavage plane, and mechanically polished in order to investigate both 
possible effects of track orientation and of heating on the registration efficiency of
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ETCHING TIME (minutes)

Fig. IV.l. Etching rates of chabazite for NaOH 
and KOH (spontaneous fission tracks).

Fig. IV.2. Etching rates of chabazite for NaOH 
and for KOH (induced (artificial) fission tracks).

chabazite. The polished samples were irradiated from a 252Cf source in a 2ji geometry 
for equal times in order to implant the same number of fission fragments. The angular 
track distribution was then obtained by measuring the inclination of the ends of tracks 
relative to a fixed, but arbitrary direction, the analysis being carried out using both 
optical and scanning (SEM) microscopes. The distribution of etched tracks in the 
{1011} plane for different etching times is shown in Figure IV.3. It is quite clear that, 
beyond a certain minimum etching time, the track density remains constant. Similar 
results have been reported by NISHIDA and TAKSHIMA61 and KOUL et al.62 
However, it may be shown that for certain materials the track density or an internal 
surface continues to increase with prolonged etching. With glass, for example, there is a 
further exposure of new tracks as the surface is progressively attacked by the etchant. 
These are then added to the previous tracks which remain visible with continued
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Fig. IV.3. Sets of contour lines showing the angular distributions of etched tracks in the {1011} plane 
obtained by etching the same chabazite sample for 10, 20, 30 and 40 minutes in KOH. The efficiency and the 
degree of isotropy with increasing etching are not improved.

etching. In the case of chabazite etched in KOH this effect does not occur. The present 
experiment demonstrates in addition that the etching of {1011} chabazite at different 
temperatures, however prolonged, does not improve the degree of isotropy of the etched 
tracks. Other crystal planes ({1101} and {0112}) gave identical results.
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Fig. IV.4. Scanning elec
tron micrograph of a fis
sion fragment track in 
chabazite, etched in KOH 
(3 g in 4 g H2O). The 
micograph was taken at a 
dip angle of 45°.

Experiments were also carried out to determine the relative effect of heating on the 
degree ofisotropy of the etched tracks in the {1011}, {1101} and {0112} planes. Samples 
of chabazite were heated at different temperatures and afterwards etched in KOH for 
the appropriate length of time. No amount of prior annealing improved the isotropy of 
the tracks in a sample. We conclude that the anisotropic etching behaviour of fission 
fragment damage trails is accordingly a natural and inherent property, unaffected 
either by etching or heating.

The brief scanning electron microscope (SEM) study of fission fragment damaged 
chabazite was made in order to examine etched tracks at a higher magnification. 
Samples of chabazite of about 1—2 cm2 in area were irradiated in the thermal column of 
the reactor to a total thermal neutron dose of 1015 nvt in order to induce fission of 
uranium impurity atoms. These samples were then polished down to a thickness of ~ 3 
microns, and etched in the appropriate chemical reagent (see earlier sections) for the 
appropriate length of time. After evaporation of a thin layer of gold the samples were 
examined in the JEOL instrument. Figure IV.4 shows a single fission track in a
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Fig. IV.5. Scanning elec
tron micrograph of a fis
sion fragment track in 
chabazite, etched in KOH 
(3 g in 4 g HjO) after 
heating at 400°C for 1 
hour. No substantial 
change is observed al
though the track is re
duced in size due to an
nealing.

chabazite specimen tilted to an angle of 45°. Annealing was carried out at successively 
higher temperatures (ranging from 100-500°) in an attempt to observe any change with 
temperature in the morphology of a typical etched fission track. No substantial change 
was observed in the 100—300°C temperature range, though at 400°C tracks were 
reduced in size due to annealing (Figure IV.5). From the present study we therefore 
conclude that the shape of the etch pits does not change in different planes of the crystal 
when using the same chemical reagent, and there is no temperature dependence in the 
degree of track anisotropy in chabazite. The shape of the etch pits was different when 
the samples were etched in different chemical reagents. Different etchants, however, 
gave no improvement in the degree of anisotropy of chabazite when used as a track 
detector. The general etching velocity, V , apparently does not vary from plane to plane 
in the same crystal. It is more than likely that the anisotropy has its origin in the spatial 
variation of electronic stopping power Se for natural fission fragments moving in 
chabazite.63
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V. The Annealing Correction to Fission Track (FT) Ages

Due to the effect of thermal (igneous) annealing over geological time the ages of 
minerals determined by the fission track technique have on occasion been observed to 
be lower64-66 than corresponding ages determined by the far more conventional radi
ometric methods.67,68 No theory exists which can completely explain the annealing of 
radiation damage and rejuvenation of minerals on heating, though models have been 
proposed on the basis of limited experimental observations.69 It is rather clear, however, 
that when a mineral is heated at high enough temperatures there is a return of some 
atoms to lattice sites and, although dislocations and other extended defects are formed, 
most of the strain present due to radiation damage disappears. The degree of the 
annealing in general depends both upon the temperature and the time of heating. For 
each mineral, however, there is a characteristic ‘annealing temperature’ at which 
measurable strain is totally removed; virtually complete restoration can be considered 
to have taken place.

Some possibility of the annealing of radiation damage and therefore of track fading in 
minerals always exists. The track fading can be caused by a short time, higher 
temperature event or by a lengthy anneal at only a slightly elevated temperature during 
the geothermal history of the earth’s crust. The importance of thermal excursions 
which take place during the geological history of a sample and of the consequent effect 
upon the final fission track age must not be minimized. Experiments were accordingly 
carried out both to determine the extent of this effect and to provide a calibration curve 
for making the appropriate correction.*

* STROZER and WAGNER70 first proposed an appropriate method for correction of a thermally lowered 
track density, using calibration curves of residual track density as a function of average length of etch pit, 
both quantities being expressed as fractions of their unannealed values. The method has frequently been 
used in the correction of thermally lowered fission track ages;12’66’70-74 it is applicable both to glasses12’73 
and minerals.66’75-78

** It is important to note that the chabazite crystal structure only begins to break down at approximately 
840°C.79

The specific mineral samples selected for this work included chabazite from Vågar 
(Faeroe Islands), and phlogopite from Gardiner, East Greenland. Both minerals were 
separated from crushed rock using common laboratory techniques, and samples 
polished by the usual procedures. After annealing chabazite at 520°C for 3 hours,**  
and phlogopite at 570° for 3 hours, induced fission tracks were created at a thermal 
neutron dose of 1015 (nvt). The fission fragment track density was then determined by 
etching aliquots, which had undergone heat treatments varying from 100 to 500° 
(± 5°C) for a period of one hour in each case, and the reduction of track density and 
track length was observed. A procedure for etching through different planes was 
adopted for the revealing of full length tracks. Length measurement itself was per
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formed by measuring both track dip and projected length, and optical phase contrast 
methods used to enhance precision. An average of‘major’ and ‘minor’ axes for each 
etch pit was recorded as the corresponding ‘etch pit length’. For almost 9000—11000 etch 
pits scanned a total of between 800 and 900 track lengths were measured - an extremely 
lengthy and laborious process but one absolutely necessary for proper statistics. Figure 
V.l shows how the reduction in track density and track length in chabazite depends 
upon temperature. This kind of information makes possible an immediate estimate of 
the degree of fading of the spontaneous tracks, and hence the reduction in age. At 
100°C, a slight decrease of~ 2.0% in track density and ~ 3,5% in the mean track length 
of etch pits was observed in the case of chabazite. At higher temperatures, the track 
length decreased more rapidly than the track density. At a constant temperature of 
500°C a period of 1 hour reduced the track density by 57.3% and the track length by 
78.3%. Following 1 hour at 600°C all tracks were completely annealed. In the case of 
phlogopite, changes in track length and track density at 100°C were almost negligible. 
At 100°C, a decrease of 3.5% in track length and no change in track density was 
observed. At higher temperatures, however, the track length decreased more rapidly 
than the track density as was precisely the case for chabazite. At 700°C, the track 
density was reduced by 60% and the track length by 69%. At 800°C all the tracks were 
annealed out, due to a phase change in the solid.

The observation that the reduction in track density with temperature lags behind the 
track length (Figure V.l) is important. Measurement of235U induced fission fragment 
tracks in unannealed samples, and in samples which had been subjected to various 
annealing treatments, were therefore carried out. It is the shrinkage in track length, 
plotted as a function of track density reduction, which gives the proper calibration 
relationship. The ratio of mean etch pit legth of uannealed and annealed fission tracks 
is shown as a function of the percentage of fission track density reduction in Figure V.2. 
The resulting calibration curve has been used to correct thermally lowered fission track 
ages of chabazite, and we find the correction to fission track ages to be ~ 3% for 
chabazite, and ~ 6% for phlogopite.

The stability of fission tracks varies from substance to substance. Indeed it is this 
very variation which gives rise to optimism as to the reconstruction of rock cooling 
histories, provided that the temperatures or temperature ranges below which the tracks 
are retained can correctly be estimated. Therefore, in some cases it is possible to learn 
about the igneous (annealing) activity which the mineral has endured over geological 
time. For example, in the case of phlogopite from the Gardiner complex of East 
Greenland, annealing studies confirm that fossil fission fragment tracks (radiation 
damage) in the mineral can be erased during intense metamorphic episodes, thus 
resetting the geological clock.

The fission track method has, of course, already proved to be a valuable technique for 
the dating of the mica group.27,8f>_83 Furthermore, the fact that these minerals have the
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Fig. V. 1. Normalized track densities p/po(0) and 
track lengths R/RO(A) displayed as a function of 
annealing temperature T for chabazite.

Fig. V.2. Percentage reduction of fission track 
lengths in chabazite shown as a function of the 
percentage reduction in fission track density.

potential for an unravelling of the geothermal history of the area of origin is well 
documented.20,21,84-86 In what now follows we are primarily concerned with the thermal 
annealing behaviour of phlogopite in particular. The annealing data obtained is 
interpreted in terms of a palaeoisotherm of the fission track clock in the mineral. 
Measurement are also presented of the etchable “ranges” of spontaneous and induced 
fission tracks in the phlogopite samples.

In general the method most commonly used to study the annealing behaviour of 
minerals involves attention to the following:

(1) The selected sample should have a uniform and large induced track density. It 
should be irradiated to a suitable thermal neutron dose in the reactor.

(2) The sample should have a well defined and well polished plane and as uniform a 
distribution of uranium as possible.

After preparation of good phlogopite samples according to these criteria etching was 
accomplished by immersing the specimens in 40% HF at 23°C. The tracks, randomly 
distributed, could easily be distinguished from surface dislocations. Following deter- 
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mination of the spontaneous track density, samples were heated in a furnace in air (for 3 
hours at 600°C) to anneal all fossil tracks, and then irradiated to a thermal neutron dose 
of 1015 nvt in the thermal column of the reactor. They were then scanned in the optical 
microscope and the density of induced tracks was determined at a total magnification of 
X600 using a 5 X 5 ocular graticule. Studies were also made of the variation of track 
density as a function of temperature and time. The irradiated samples were reclcavcd in 
order to remove upper layers and any possible uranium contaminant of non-crystallinc 
origin. These cleaved samples were then heated in a furnace at temperatures between 
500°C at intervals of 30°C, and for times varying from a few minutes to several hours. 
They were then etched and scanned for any change of track density. The annealing data 
for phlogopite, shown in Figure V.3 represent 0%, 25%, 50%, 75%, and 100% track 
reductions, determined at various temperatures and corresponding to different times. 
The data have been extrapolated to geologically meaningful times and temperatures.

Annealing of fission tracks87 has been reported for tektites,12’88-90 for epidote,91’92 for 
micas,66,93 for zircons94 and for apatite. As Table 1 shows, each mineral has different 
annealing characteristics, and fission tracks in phlogopite anneal out at lower tempera
tures than those in muscovite and zircon. In almost every instance, however, the 
annealing rate is represented by a simple Arrhenius relationship:

l°gd = l°g,a + (- 

where t and T are the annealing time and temperature respectively, £ is the activation 
energy, a is a material specific constant dependent on the degree of annealing, and k is 
Boltzmann’s constant. Figure V.3 shows that phlogopite is no exception.

Phlogopite loses some fission tracks at —45°C in 106 years, and all tracks arc erased 
at 195°C in 106 years.***

From Figure V.3 it is also possible to make some assessment of the thermal history of 
a typical phlogopite of this type. Thus, if the fission track (FT) age agrees with an 
absolute age or ages determined by some other method, then the rock temperature 
must have remained to the right of the 0% track loss curve throughout. Conversely, if 
the FT age is less than those recorded by other methods, then the FT age implies that a 
geological cooling period has taken place. A “mixed” FT age results if the rock has been 
heated to such a temperature and for such a length of time that the corresponding point 
falls in the field between the 0% and 100% reduction in track density curves. Our

* * * It has also been found that heating under pressure shows no detectable effect on the annealing properties 
of phlogopite. The annealing characteristics of zircon, on the other hand, are slightly affected by a 
hydrostatic pressure.94
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Temp (l0°9^ ) ----- •.

Annealing temperature °C Fig. V.3. Annealing time 
as a function of annealing 
temperature for track den
sity reductions in phlo
gopite of between 0% and 
100%. Experimental re
sults (------- ) are extrapol
ated to geologically mean
ingful times and tempera
tures (........).

annealing experiments with phlogopite both confirm that fossil fission tracks are 
unstable and that the degree of instability varies from mineral to mineral. Furthermore, 
as with other radiometric methods, the FT age of phlogopite determines neither the age 
of mineralization nor the deposition age of the rock. It is the cooling age of the mineral 
which is established.

The demonstrable value of the fission track method has also stimulated specific 
laboratory experiments by a number of investigators on the track retention properties 
of minerals and glasses. The annealing data for certain minerals have been interpreted 
in terms of what might be called a “blocking temperature”, which is a sharp transition 
of the palaeoisotherm at some time during the process of cooling. Different materials of 
course display different track retention properties, and the retention temperature 
depends upon the etching parameters, chemical variations in the material composition 
and on the track orientation.95 All these factors have to be considered when annealing 
experiments directed at determining the thermal history of a sample (and its blocking 
temperature) are carried out. According to Haack96 when a rock cools steadily to lower 
temperatures, the growth of track density increases linearly with time. For a specific 
cooling rate it is therefore possible to extrapolate back to a palaeotime of — 105 to ~ 108 
years and hence to the temperature at which the track density was zero. Fission track 
blocking temperatures of various micaceous and accessory minerals, and some selected 
zeolites are compiled in Table VI. 1. Temperatures are given both for full and half track 
fading, and for different annealing times.
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Fig. VI. 1. Photo
micrographs showing 
spontaneous fission 
tracks in chabazite 
etched in KOH 
(3 g in 4 g H2O) (a), 
and induced 
fission tracks in 
chabazite irradiated 
with 1.42 X 1015 nvt 
thermal neutrons, and 
etched similarly (b).

VI. Fundamentals of Fission Track (FT) Dating

The experimental FT technique used was similar to that of both NAESER and co
workers,91 and KOUL and VIRK,20 though with minor modifications which are briefly 
described. Thin transparent specimen sections approximately 0.5 mm across were 
separated from the host rock and mounted in epoxy resin, the upper surface of each 
sample being ground successively with 400, 600 and 800 mesh emery, polished with 
cerium oxide, and then followed by a final polishing with 6, 3, 1 and lA pm diamond 
paste. Samples of chabazite, stilbite, heulandite, apatite, sphene and zircon were
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Fig. VI.2. Photo
micrographs showing 
spontaneous fission 
tracks in stilbite 
etched in 2% HF at 
23°C (a), and induced 
fission tracks in 
stilbite irradiated with 
7.12 X 1015 nvt ther
mal neutrons, and 
etched similarly (typi
cal anisotropic be
haviour) (b).

treated identically, although the preliminary grinding was somewhat longer for crystals 
of zircon and sphene. Etching of the polished samples was by simple immersion in the 
appropriate chemical solvent.

The zeolites (chabazite, stilbite and heulandite) and the accessory minerals from 
igneous rocks (zircon, apatite and sphene) were all dated using the EDM (external 
detector) method;61,97 samples were sandwiched between muscovite mica detectors for 
the registration and counting of induced tracks. Chabazite itself was etched in KOH (3 
g in 4 g H2O) (see, e.g., Figure VL1), while studies of various etchants for stilbite 
resulted in the use of 2% HF at 23°C for 20—30 secs (Figure VL2), and 10 ml aqua regia
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Table VI. 1
Fission track retention and blocking temperatures of minerals

Material Degree of Loss Annealing 
Temperature 

1 hour 
°C

Blocking 
Temperature 

°C

Reference

Apatite Half 336 108 (26)
full 370 165 (21)
full 400 170 (23)
half - 130 (HO)

Australite full 520 250 (HD
Biotite full 500 - (66)

half - 100 (HO)
Basaltic glass full 230 - (112)
Chabazite full 510 149 (62, 109)

Epidote full 620 390 (113)
Garnet full 545 - (93)

full 610 - (109)
Heulandite full 545 - (109)
Moldavite full 495 - (12)

Muscovite full 700 - (66)
Phlogopite full 625 195 Present work
Stilbite full 495 - (109)
Sphene half 610 350 (21)
Zircon full 750 - (23)

full 870 - (61)
- 380 (114)

with 1 ml 2% HF at 23°C for 30-50 secs for heulandite. Zircon and sphene were etched 
in KOH: NaOH (the eutectic contains 50.6 mol % KOH and 49.4 mol % NaOH) at 
200° for 8—20 hours and 50N.NaOH at 140° for 1—6 hours respectively. Apatite was 
etched in 5% HNO3 for 20—30 secs, and phlogopite in 48% HF.

After determinations of spontaneous track density samples of all minerals were 
sandwiched between mica detectors and irradiated in the thermal column of the 
nuclear reactor. The integrated thermal neutron dose to which the samples were 
exposed was itself determined by counting tracks in a muscovite detector irradiated in 
contact with the standard NBS glasses SRM-962 and SRM-963 (calibrated against 
copper). The muscovite dosimeters were etched with freshly prepared 48% HF for 40- 
50 minutes at 23°C in order to obtain well defined induced tracks, approximately 800- 
1000 pits again being scanned for each consignment. An investigation of the general 
relationship between track counting on internal mineral surfaces and that on external 
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detectors was also made in order to determine the geometric factor for use of external 
detectors with zeolites. For the zeolites studied the geometric factor varied between 
0.51 ±0.02 and 0.57 ±0.03, assuming the etching rate and the counting efhency for 
external detectors to be the same for each zeolite, and the track shape also to be the 
same. The track etching rate was always found to be greater than the general etching 
rate of the mineral surface. However, etching of tracks lying in different orientations was 
highly anisotropic giving rise to etch pits of varying topographic appearance. The 
constants used in the age calculations were Xr (spontaneous decay of 238U) = 6.8 X 10“17 
yr-1, X.d (total decay constant of uranium) = 1.551 X IO10 yr1, I (isotopic abundance of 
235U with respect to 238U) = 7.253 X IO“3, and af (cross-section for thermal neutron 
induced fission of 235U) = 5.802 X 10'22 cm2. Errors were calculated throughout accord
ing to the methods af McGEE and JOHNSON98 and NAESER et al.99, and expressed 
as one standard deviation.

VII. Results
VII.1. The Faeroe Islands

Our knowledge of the geology of the Faeroe Islands (section II and Figure VII. 1) 
described by RASMUSSEN and NOE-NYGAARD100 and WAAGSTEIN37 may be 
considered to have been supplemented by SCHRØDER101 who, on the basis of a 
limited magnetic survey, was able to demonstrate the presence of two domes centred to 
the west of the Islands. One of these lies just offMykines where, on the most westerly 
point of the Islands (Mykines Holmur) the lavas attain an eastward dip of up to 15°. 
The other is to the southwest of Suduroy where a similar increase in dip occurs. This 
doming apparently affected the plateau subsequent to the volcanic activity, but may 
have overlapped and given rise to the tensional stress field which determined the 
emplacement of many of the minor intrusions.

WAAGSTEIN37 reports the recovery of abundant reworked pyroclastic material 
from the sedimentary basins adjacent to the Islands, suggesting that the latest volcanic 
activity was submarine and due to submergence of the plateau. Thus volcanism and 
subsidence apparently kept approximate pace with each other as in the case of East 
Greenland. Uplift of the entire area took place later and the present mountain tops 
roughly define a gipfelflur ranging from about 800 m in the north to around half this in 
the central islands, and rising again to around 500 m on Suduroy. It is of considerable 
interest to determine the mechanisms ot these vertical movements. The subsidence, 
doming and regional uplift strongly resemble those of East Greenland (although on a 
less grand scale). To this end it is important to establish the timing of these events.

It is clear from the field relationships that significant time gaps separated the three 
series, though this has not shown up in radiometric dating, from which variable ages 
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lying between 49.2 + 1.5 X 106 up to 60.4 ± 1.4 X 10° y have been obtained.102 Indeed, 
subseqent refinement of the data103 suggests that the entire Facroese lava pile from the 
bottom of the Lower to the top of the Middle Series was erupted in the interval 
55.2 X 1.0 = 106 y and 54.6 ± 1.2 X 106 y ago. Fission track results for chabazite, stilbite 
and heulandite shown in Table VII.1, for samples taken as shown in Figure VII.1, yield 
a spread of FT ages from 41.6 + 1.1 X 106 y up to 55.4 ± 2.5 X 106 y, and the distribution 
of ages is such that the oldest value is from the Lower Series. However, we have no other 
evidence to contradict the general K-Ar results which indicate a relatively short time 
span for the volcanic activity, consistent with results from contemporaneous East 
Greenland and Faeroesc lavas.104 Our interpretation of the observed distribution is that 
it is most reasonably explained as being regional, the youngest ages in the north-eastern 
part of the Islands reflecting a more prolonged cooling there. This conclusion clearly 
requires an investigation of many more samples. It is consistent, however, with the 
belief of WAAGSTEIN37 that volcanic activity had continued much longer than may be 
seen today, with the formation of overlying tuffs, since stripped away and deposited as 
clastic sediments on the insular shelf. If this activity had been confined to the north
eastern part of the islands, it would have provided an insulating cover which could have 
allowed hydrothermal circulation (with associated zeolite depositions) over a long 
period. Ages from the Lower Series on Suduroy and Mykincs which are close to the 
accepted age of volcanism indicate that in the south and west of the islands the lavas 
underwent rapid cooling either as a result of lack of burial by significant amounts of 
overlying material, or as a result of very rapid uplift. Such a rapid uplift is likely to be a 
consequence of the dome-shaped structures believed to be present offshore to the north
west of Mykines and under Suduroy.100 These domes, although on much smaller scale, 
invite comparison with East Greenland where a large domal uplift described by one of 
us45 was raised shortly after the basaltic volcanism and rapidly dissected by erosion.
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i

Fig. VII. 1. Geological map of the Faeroe Islands (see reference 113).
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Table VII.l
Fission track results for minerals from the Faeroe Islands

40:13

Sample 
location*

Lab. 
symbols

es
(cm-2) (cm-2)

<D
(nvt)

R N F.T. age
(m.y.)

1. Chabazite. CR105 1.54 X 104 1.73 X 103 7.52 X 1013 0.98 5 41.2 ± 1.8
Runvik, Eysturoy. CR109 1.75 X 104 1.73 X 10s - 0.965 5 41.0± 1.6
(U.S.) CR115 1.68 X 104 1.74 X 103 - 0.882 6 44.7 ±2.0

CR116 1.35 X 104 1.48 x 103 - 0.865 8 42.3 ±2.0
CR118 1.92 X 104 2.06 x 103 - 0.786 6 43.2 ± 2.1
CR120 1.39 X 104 1.41 x 103 - 0.744 7 45.7 ± 2.1
CR125 1.42 X 104 1.65 x 103 - 0.971 10 40.0 ± 1.8

2. Chabazite. 79-500/A1 1.64 X 104 3.50 x 104 1.51 x IO13 0.974 6 43.5± 1.6
Slaettafjall, 79-500/A2 1.82 x 104 3.81 x 104 - 0.945 6 44.4 ± 1.6
Eysturoy. 79-500/A5 1.35 x 104 2.74 x 104 - 0.895 9 45.7 ±2.0
U.S. 79-500/A6 1.95 x 104 4.54 x 104 - 0.893 5 39.9± 1.9

79-5OO/A7 1.74 x 104 3.31 x 104 - 0.873 5 48.8 ±2.1

3. Chabazite. 79-2/C2 1.48 x 103 2.34 x 104 9.80 X 1013 0.745 6 38.2± 1.7
Malinsfjall, 79-2/C5 1.65 x 103 2.41 x 104 - 0.894 8 41.3±2.0
Vidoy. 79-2/C6 1.54 x 103 2.23 x 104 - 0.981 6 41.7 ± 1.9
(U.S. 79-2/C8 1.37 X 103 1.95 x 104 - 0.984 4 42.4 ±2.1

79-2/C9 1.52 x 103 2.20 x 104 - 0.989 7 41.7 ± 1.8

4. Chabazite. 79-95/A 1.54 x 104 3.52 x 104 1.51 x IO13 0.996 7 40.7± 1.7
Nordara, Sandoy. 79-95/7A 1.73 x 104 4.12X 104 - 0.832 6 39.1 ±1.9
(U.S.) 79-95/8A 1.64 x 104 3.54 x IO4 - 0.919 8 43.1 ±2.0

79-95/11A 1.94 x 104 4.15X 104 - 0.895 7 43.3 ± 2.1
79-95/1B 2.34 x 104 4.81 X 104 - 0.983 6 45.2 ± 1.9
79-95/5B 1.34 x 104 2.63 x 104 - 0.865 8 47.3±2.2

5. Chabazite. CHVF1 7.85 x 104 1.42 x 103 1.42 x IO13 0.853 13 48.3 ± 1.1
Eidi, Eysturoy, CHVF2 7.22 x 104 1.34 x IO5 - 0.764 8 47.1 ± 1.8
(M.S.) CHVF3 6.84 x 104 1.21 x IO3 - 0.985 9 49.4 ± 1.6

CHVF5 6.42 x 104 1.15 x IO3 - 0.982 9 48.8 ± 1.9
CHVF5 7.35 x 104 1.36X 103 - 0.891 7 47.3 ± 1.9

6. Chabazite. CH205 6.42 X 104 3.22 x 103 4.23 x IO13 0.891 5 51.9 ± 3.1
Suduroy, Tvoroyri. CH207 6.13 x 104 3.12X 103 - 0.980 8 51.2 ± 3.0
(L.S.) CH208 5.84 X 104 2.85 x 103 - 0.912 11 53.4 ±3.1

CH231 5.73 x 104 2.91 x 103 - 0.943 7 51.3 ± 3.0
CH232 6.02 x 104 3.0 x IO3 - 0.650 9 52.3 ±3.2
CH239 6.35 X 104 3.21 x IO3 - 0.960 5 51.5 ± 3.0

7. Stilbite. SRF1 6.5 x 104 1.38 x 103 1.51 x IO13 0.934 7 43.8 ± 1.2
Runavik, Eysturoy, SRF2 7.2 x 104 1.41 x 103 - 0.782 7 47.5± 1.8
(U.S.) SRF3 6.3 X IO4 1.35 x IO3 - 0.835 6 43.4±2.0

SRF4 4.5 x 104 0.85 x 103 - 0.992 10 49.2 ±2.1
SRF5 7.2 xlO4 1.4 x 103 - 0.982 7 47.8 ± 1.9
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Stilbite. 43865/B 1.34X 104 4.51 x 104 2.48 x 1015 0.984 8 45.4 ± 1.9
Gassâ-Breidâ, 43865/B5 1.47 x 104 4.23 x 104 - 0.987 6 53.1 ±2.3
Streymoy 43865/B6 1.68 x 104 5.65 x 104 - 0.973 10 45.4 ± 1.9
(U.S.) 43865/B7 2.13X 104 7.54 X 104 - 0.931 9 43.2 ± 1.9

43865/BB 1.54 x 104 5.23 X 104 - 0.843 5 45.1 ±2.0

Stilbite.* ** SK737 3.25 x 104 2.71 X 105 6.24 X IO15 0.862 5 46.1 ±2.0
Sörvagur, SK835 3.02 x 104 2.7 X 105 - 0.938 4 43.0 ± 1.9
Vâgar. SK1071 2.72 x 104 2.34 x 105 - 0.895 9 44.7 ±2.0
(M.S.) SK1072 2.85 x 104 2.5 x 105 - 0.795 9 43.8 ± 2.1

SK1079 3.12X 104 2.35 x 105 - 0.692 8 51.0± 2.2
SKI 080 2.24 x 104 1.95 x 105 - 0.935 10 44.2 ± 2.1
SK108I 2.90 x 104 2.52 x IO5 - 0.892 7 44.2 ±2.0

Stilbite. 18304/X3 4.35 x 104 1.26 x 105 2.49 X IO15 0.943 8 52.9 ±2.8
Hamar, Suduroy. 18304/X5 5.24 x 104 1.57 x 105 - 0.912 8 51.2 ± 3.0
(L.S.) 18304/X6 4.14X 104 1.21 x 105 - 0.981 7 52.5 ±2.9

18304/X9 3.27 x 104 0.90 x 105 - 0.894 6 55.7 ±3.2
18304/X 10 3.84 X 104 1.14X 105 - 0.895 5 50.9 ±3.0
18304/X 10A 4.44 X 104 1.32 x 105 - 0.794 5 50.9 ±3.1

Stilbite. 18301/FS 4.32 x 105 7.63 x 105 1.51 X IO15 0.878 5 52.6±3.2
Frodböur Kirke, 18301/FS2 4.14X 105 7.25 x 105 - 0.985 10 53.1 ±2.8
Suduroy. 18301/FS7 7.25 x 104 1.23 x 105 - 0.913 6 54.8 ±3.2
(L.S.) 18301/FS9 3.75 X 105 7.13X 105 - 0.986 7 48.9 ±2.6

18301/FS10 5.64 X 105 9.87 x 105 - 0.895 6 53.1 ±3.0
18301/FS13 4.56 x IO5 7.65 X 105 - 0.764 5 56.5 ±3.1

. Heulandite. HL1 4.72 x 104 4.50 x 105 8.04 x 1015 0.970 5 51.9 ± 2.9
Smôrbûshellisgjôgv, HL2 5.12X 104 4.62 x 105 - 0.890 4 54.8 ±3.1
Mykines. HL3 4.81 x 104 4.55 x 105 - 0.981 7 52.3 ±3.0
(L.S.) HL5 5.24 x 104 4.64 x 105 - 0.973 8 55.9 ±2.9

HL9 4.65 x 104 4.30 x 105 - 0.952 5 53.5 ±3.0
HL10 5.23 X 104 4.75 x 105 - 0.895 6 54.5 ±2.9
HL13 4.90 x 104 4.62 X IO5 - 0.965 6 52.5 ±2.8
HL8 5.04 x 104 4.21 x 105 - 0.891 8 59.2 ±3.1

. Heulandite, HG22 3.45 x 104 5.55 X IO5 9.64 x 1015 0.772 6 36.9 ± 1.9
Gassà-Breidâ. HG25 4.51 X 104 6.03 X 10r> - 0.894 7 43.7± 1.8
Vestmanna HG28 2.2 x 104 3.04 X 105 - 0.983 8 43.4 ± 1.8
Streymoy. (U.S.) HG33 5.34 x 104 7.76 X IO5 - 0.712 6 40.9 ± 1.9

. Heulandite, HIE50 8.04 x 104 5.67 X IO5 5.64X 1015 0.882 5 49.2 ±2.0
Eidi, Eystoroy. HIE55 7.23 x 104 5.24 X 105 - 0.813 5 47.9 ±2.0
(M.S.) HIE57 4.73 x 104 3.65 X IO5 - 0.954 9 45.0 ± 1.9

Qs is the spontaneous track density, Qj the induced track density, n the thermal neutron dose (nvt), N the 
number of grains counted, and R the correlation coefficient.

* US, Upper Series; MS, Middle Series; LS, Lower Series.
** Fissure-filling, all others are from amygdales.
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VII.2. Greenland

The East Greenland sector of the North Atlantic province is an exceptionally well 
exposed and well developed example of continental break-up which has been subject to 
a number of expeditions from Copenhagen with the specific object of documenting the 
magmatic and tectonic activity associated with this important phase of plate motions. 
In the present work material from the following localities (Figure VI1.2) has been 
studied.

(i) The Kangerdlugssuaq Intrusion
This exceptionally large syenite pluton is roughly circular with a diameter of more than 
30 km. It contains both oversaturated and undersaturated rocks and was emplaced 
centrally in the Kangerdlugssuaq domal structure. Several workers have dated the area 
using various methods. BECKINSALE et al., using the K-Ar method,46 and PANK- 
HURST et al.,105 using the Rb/Sr method, obtain a mean age of 49.2 ±0.6 m.y. 
BECKINSALE et al.46 have also dated amphibole from the Kap Boswell syenite, which 
is in good agreement with results for Kangerdlugssuaq. Fission track dating of zircons 
from Skaergaard, made by BROOKS and GLEADOW,43 yields an age of 54.6+ 1.7 
m.y, showing the emplacement to be close to 50 m.y. However, our FT ages (Table 
VII.2) and the ages reported more recently by GLEADOW and BROOKS48 are in 
close agreement, and we also conclude that there must have been a slow cooling at 
former deep levels, which now lie at the surface due to erosion of as much as 6 km of the 
overlying dome. The apatite cooling age (which records cooling through the approxi
mate 100°c isotherm (see section V) is somewhat in agreement with that reported 
earlier.26

Our new fission track ages for zircon from the Kangerdlugssuaq intrusion (Table 
VII.2) have a weighted mean of 49.6± 2.9 m.y. These figures are in good agreement 
with the ages reported previously.43 The apatite ages from the above intrusion give a 
mean age of 38.2 ± 2.2 m.y, significantly lower than the ages obtained for zircons, 
suggesting prolonged cooling in this area followed later by uplift and erosion. It is 
suggested,45 for the area south of Scorcsbysund centred on the fjord of Kangerdlugs
suaq, that an analysis of the physiographic elements of landscape indicates the major 
uplift to have occurred in two phases. A project using both K/Ar and fission track 
dating is presently underway in order to clarify this. Further studies show that on 
approaching the Kangerdlugssuaq district the pre-syenitic basalt become increasingly 
tilted upwards and are finally completely dissected to expose a core of Precambrian 
gneisses centred on Kangerdlugssuaq. These gneisses form jagged alpine peaks rising 
to around 2.5 km and it is clear that erosion has been active for a much longer time than 
in outlying basaltic areas. By making certin simple and reasonable assumptions it is
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Fig. VII.2. Geological map of East Greenland.
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Table VII.2
Fission track results for minerals from Greenland

Sample 
location

Lab. 
symbols

es
(cm-2)

Pi
(cm-2)

0>
(nvt)

R N ET. age
(m.y.)

1. Apatite. ZR10 3.90 X 104 1.8 X IO3 3.8 X 1013 0.948 9 50.7 ±2.8
Gardiner, ZR02 8.40 X 104 3.9 x 103 - 0.858 9 50.4 ±3.1
East Greenland. ZR03 7.32 X 104 3.3 x 103 - 0.991 11 51.9±3.2

ZR09 6.72 x 104 3.2 x 103 - 0.981 10 48.8 ±2.9

2. Apatite. AA101 1.75X 103 2.73 x 10b 8.83 X IO13 0.953 7 34.9 ± 1.8
Aliurssik, AA102 2.45 x 105 4.12X 106 - 0.967 6 32.4± 1.7
East Greenland. AA104 1.64 x 103 2,57 x 10« - 0.880 6 34.7 ±2.0

AA105 1.42 x 103 2.12 x IO6 - 0.995 9 36.5 ± 1.6
AA106 1.52 x 103 2.31 x 106 - 0.987 8 35.8 ± 1.9

3. Apatite KT15 4.7 x 104 2.8 x IO3 3.84 x 1013 0.754 5 38.8 ±2.3
Kangerdlugssuaq, KT 16 4.3 x 104 2.8 x IO3 - 0.895 6 36.3 ±2.0
East Greenland. KT 17 4.2 x 104 2.4 x 103 - 0.982 5 41.4 ± 2.1

KT 18 3.9 x 104 2.5 x 103 - 0.923 7 36.9 ±2.4
KT 19 8.4 x 104 5.0 x IO3 - 0.897 6 39.7 ±2.3
KT19A 5.4 x 104 3.4 x IO3 - 0.985 8 37.6 ± 2.1
KT20 5.6 x 104 3.5 x 103 - 0.727 5 37.9±2.6
KT22 4.8 x 104 3.1 x IO3 - 0.895 7 36.6 ±2.0

4. Sphenes. BK1 5.3 x 105 1.70X 10b 2.69 X IO13 0.895 6 51.6 ± 2.6
Gardiner, BK2 4.5 x 103 1.50 X 10« - 0.974 8 49.7 ±2.2
East Greenland. BK3 4.9 x 103 1.62 x 106 - 0.747 6 50.1 ±2.4

BK4 6.1 x 103 2.10X 10e - 0.985 5 48.1 ± 1.9
BK5 5,31 x IO3 1.79 x IO6 - 0.991 7 47.5 ± 2.1
BK7 5.62 x 103 1.64 x 106 - 0.985 8 55.3± 1.9
BK8 7.25 x IO3 2.38 x IO6 - 0.874 7 50.5 ±2.4
BK9 6.41 x 103 2.14X 106 - 0.768 13 49.6 ±2.6
BK10 4.25 X IO3 1.33 x 106 - 0.845 8 52.9±2.8

5. Zircon. AG21 5.23 x 103 1.45 x 106 2.40 X IO13 0.994 7 53.3 ± 1.9
Gardiner, AG28 4.84 X 103 1.32 x 106 - 0.932 5 54.2 ±2.1
East Greenland. AG29 4.75 X 103 1.30 x 106 - 0.897 5 53.9±2.3

AG32 5.41 X IO3 1.53 x 106 - 0.983 6 52.2 ± 1.8
AG39 6.22 x 103 1.75 x 106 - 0.763 8 52.5 ±2.4

6. Zircon. AZ91 3.24 x 103 2.12X IO6 3.84 X 1013 0.973 6 36.2 ± 1.1
Aliuarssik, AZ95 3.51 X IO3 2.24 x 106 - 0.895 7 37.1 ±1.2
East Greenland. AZ98 2.84 x IO3 1.92 x 106 - 0.932 6 35.0 ± 1.1

AZ99 3.12 X 103 2.11 x IO6 - 0.981 8 35.0 ± 1.0
AZ103 4.03 x IO3 2.70 x 106 - 0.871 6 35.4± 1.2



40:13 31

Qs is the spontaneous track density, Qj the induced track density, n the thermal neutron dose (nvt), N the 
number of grains counted, and R the correlation coefficient.

Zircon. KZ49 9.34 x 105 2.75 x 106 2.39 x 10(ii) * * * 15 * * * * 0.892 6 49.9 ±3.0
Kangerdlugssuaq, KZ53 8.62 x 105 2.63 x 106 - 0.954 6 48.2 ±2.8
East Greenland. KZ57 8.50 x 105 2.45 x 106 - 0.983 8 51.5±3.1

KZ59 4.73 x 105 1.52 x 106 - 0.980 11 45.8 ±3.0
KZ60 4.70 X 105 1.34 X 106 - 0.894 8 51.6 ±3.1
KZ65 8.32 x 105 2.40 X 106 - 0.943 7 50.5 ±2.9

Phlogopite. PL107 5.15 x 105 3.31 X 106 5.28 X 1015 0.975 8 50.6 ±2.1
Gardiner, PL 109 5.45 x 105 3.43 x 106 - 0.891 7 51.4±2.0
East Greenland. PL110 3.72 x-105 2.25 x 106 - 0.774 5 53.7 ± 2.5

PL111 4.66 x 105 3.03 x 106 - 0.981 7 50.0 ±2.0
PL112 4,35 X 105 2,85 x 106 - 0.672 9 49,8 ±2.3
PL113 5.04 X 105 3.11 x 106 - 0.743 5 52.7±2.2

(ii) The Gardiner Intrusion
According to NIELSEN and BROOKS107 and FRISCH and KEUSEN,108 this intru
sion is a ring complex composed of ultramafic and melelite bearing rocks of a rather 
unusual type situated at the head of the Kangerdlugssuaq Fjord on the continental side 
of the province where the plateau basalts are strongly thinned. It is believed to be 
derived from a ncphelinitic parent magma and its age is similar to that of the
Kangerdlugssuaq intrusion. The concordance of apatite, sphene, phlogopite and
zircon fission track ages (Table VI1.2) as well as agreement with K/Ar ages45 for mica 
indicates that it was emplaced at shallow levels and cooled rapidly. This conclusion is 
also in accord with field evidence. Small variations in the fission track ages depend on
the rates of annealing of spontaneous tracks in the minerals; each mineral anneals over
its own specific temperature range. The annealing behaviour of zircon, sphene and
apatite has been described previously.21’23,94 The mineral phlogopite was also selected 
for study, especially with respect to track retention and annealing characteristics; hence
the detailed experiments described in section V on the “ranges” of both spontaneous
and induced fission fragments. Phlogopite records cooling through a 195°C isotherm
which is somewhat higher than reported earlier for apatite. The closing temperature for
this mineral is lower than that for muscovite.

possible to construct an original land surface which shows that the area was domed up 
over some 300 km and to a height of around 6.5 km above the present sea level, or 4 km 
relative to the surrounding terrain. The Watkins Bjerge, which reaches a height of 
nearly 4 km, is part of the eroded remnants of this dome. In accordance with the ideas of 
GASS,106 this suggests that the dome developed in association with the intrusion of the 
Kangerdlugssuaq syenites about 50 m.y ago. Our fission track ages (Table VI1.2) show 
distinct cooling in this area.
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The zircon FT ages (Table VII.2) agree closely with previous K/Ar results for this 
complex. The suggestion is that there was a virtually simultaneous intrusion ofdifTcrcnt 
bodies, followed by rapid cooling to a temperature below 195°C. Samples of sphene, 
phlogopite and apatite yielded FT ages between 47 ± 2 and 54 + 2 m.y. There is 
therefore no evidence in the present work for ages older than about 55 m.y indicating 
that up to that time at least the region was so thermally unstable that even tracks in 
zircon were completely annealed. However, the Gardiner complex is believed to be of a 
similar emplacement age to that of the Kangerdlugssuaq intrusion, confirming that 
rapid cooling took place in the area. All of this, and the petrological and field 
evidence,108 suggests the Gardiner intrusion to be a very high level one indeed.

(Hi) Aliuarssik
This island in the Kialincq district is partially occupied by a circular granitic intrusion. 
Several studies indicate that magmatic activity in this area was substantially later than 
that in the Kangerdlugssuaq area, and possibly occurred in response to major readjust
ments of plate motions which are known to have taken place at this time. The apatite 
and zircon results reported here (Table VII.2) confirm the dating of this activity and 
also that cooling again took place rapidly. This is in agreement both with the previous 
results and with the field evidence, since the granite is strongly miarolitic, a texture 
characteristic of shallow level or sub-volcanic intrusions. BECKINSALE et al.46 give 
K/Ar dates for biotite and amphibole of 37.5 + 1.6 and 49.0 + 3.1 m.y respectively, 
whilst a Rb/Sr age of 35 + 2 m.y for various rocks has been reported by BROWN ct al.47 
The same authors have made K/Ar measurements on the minerals biotite and 
hornblende yielding figures of 35.9 m.y and 35.4 m.y respectively. The fission track age 
we report (35 ±1.1 m.y) once more indicates a rather rapid cooling at about this time, in 
support of earlier work by GLEADOW and BROOKS,48 who find for this granite a 
weighted mean of zircon and apatite FT ages of36.8±0.9 m.y. They also find similar 
ages for the Qajarsak granite and Bjørn syenite using zircon samples. The measured 
ages confirm that the last thermal event at about 35 m.y did not affect the fossil tracks 
stored in zircon and sphene, as they show no significant shrinkage. However, the event 
has had an effect on the measured ages of apatites.
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VIII. Conclusion

It is a basic assumption of fission track dating methods that the ratio of track to bulk 
chemical etch rate is unity, which is to say that the revelation of both spontaneous and 
induced tracks is the same under identical etching and counting conditions. In 
addition as the experiments with chabazite and other minerals clearly show, because of 
a fundamental anisotropic etching behaviour it is necessary that only surfaces with 
identical etching characteristics be used for dating purposes. For zeolites both popula- 
tioff (internal) and external^ detection procedures can be followed providing that 
certain intrinsic limitations are appreciated. For example, due to varying registration 
geometry, surface etching efficiency and angular track anisotropy, the use of external 
detectors should be avoided if the sample consists of tiny mineral grains mounted in 
epoxy resin. Violation of the assumption of identical registration and etching condi
tions makes the final fission track ages quite unreliable.

Annealing experiments show that the thermal stability of tracks in chabazite is lower 
than in sphene, garnet, epidote, allanite and hornblende. Data from these and corre
sponding experiments on track shrinkage suggest that ages determined by applying the 
fission track method to zeolites will be slightly affected by annealing. Nevertheless the 
basic FT method is considered to be generally applicable to the dating of zeolites.

Similar annealing experiments on phlogopite indicate that fission fragment tracks 
are unstable, and confirm that the degree of instability varies from mineral to mineral. 
Fossil tracks can be erased in minerals during intense metamorphic episodes, thus 
resetting the geological clock. For the case of phlogopite in particular, extrapolation of 
the experimentally determined temperatures for annealing suggests that a temperature 
of 195°c will erase all tracks in 106 years.

The fission track ages obtained for samples from the Faeroe Islands lead us to the 
conclusion that onshore volcanism was limited to a span of time between 41.6 ± 1.1 X 106 
and 55.4 ± 2.6 X 106 years ago. It is likely that this volcanic activity coincided, at least in 
part, with either global or more regional movements of both a plate-tectonic and 
epeirogenic character in East Greenland. Volcanism and epeirogenesis arc supposed to 
reflect major processes taking place in the upper mantle and are, therefore, intimately 
associated with plate tectonic events.

The observed distribution of ages in the Faeroe Islands is probably regional, with the 
youngest ages in the north-eastern part of the islands reflecting more prolonged cooling 
in that area. Ages from the Lower Series on Suduroy and Mykines, which are close to 
the currently accepted age for volcanism, indicate that in the south and west of the 

f The average spontaneous track density is here measured in one sample, and the induced track density in a 
separate sample which is annealed prior to irradiation.

ff Spontaneous tracks are etched in the mineral grains and induced tracks in an adjacent track detector of 
either muscovite or lexan polycarbonate.
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islands the lavas underwent rapid cooling either as a result of lack of burial by 
significant amounts of overlying material, or as a result of rapid uplift. Such a rapid 
uplift is most likely due to dome-shaped structures believed to be present offshore to the 
north-west of Mykines, and under Suduroy. These domes, although occurring on much 
smaller scale, invite comparison with East Greenland, where a large uplift was raised 
after the basaltic volcanism, and rapidly dissected by erosion. For the Kan- 
gerdlugssuaq area in particular it is proposed that there is clear evidence for strong 
doming and regional uplift about 50 m.y ago, giving rise to the Kangerdlugssuaq 
intrusion at a high level in the crust, close to the unconformity between Precambrian 
gneisses and the overlying tertiary basalts. With respect to identification of the 40—55 
m.y event as that occurring during continental breakup it should be noted that this is by 
far the most widespread and voluminous event in the North Atlantic. There is separate 
evidence for a volume of basalts in East Greenland of the order of 2 X 105 km3, and a 
similar volume of magma in dikes. In addition, considerable volumes of basalts, 
believed to be contemporaneous, are found in the Faeroe Islands.

The north Atlantic area is of particular interest, not only because of its position 
between the Eurasian and American land masses, but also with respect to faunal and 
floral migration.
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Introduction

Since ancient times, the Himalaya, the highest and youngest of the world’s mountain 
ranges, has had a special attraction to mankind. As a mysterious, impassable barrier it 
was the abode of good and bad spirits, of gods and many more goddesses. Its numerous 
cave were a retreat for meditating hermits, such as the world-famous Milaräpa with 
unforgetable legends and the “hundred thousand” songs which have spread all over the 
Himalaya and Tibet.

Scientific investigations in the Himalaya began relatively early, considering its 
relative remoteness, and compared to other mountain ranges. With the foundation of 
the Geological Survey of India in 1851 started a golden age of Himalayan exploration. It 
was in particular the efforts of famous European geologists which provided a cover of 
the Himalaya except its eastern part but including some regions of southern Tibet and 
Afghanistan. Though modern travel faclitics did not exist in those early days, there was 
plenty of time, and contact with the field was much more intimate compared to our 
hectic exploration with rapid but superficial coverage by jeeps and helicopters. Politi
cal boundaries already existed, and work in Tibet had to be done by trained natives — 
the famous “pundits” — or in disguise. Nepal and Bhutan were hermetically scaled 
countries.

The results of these early explorations were mostly stratigraphical. The recognition 
of complicated structures was handicapped by failure to recognize the conspicuous 
allochtonous masses in many regions, in spite of the fact that the nappe theory was 
understood in the Himalaya before it was published in the Alps. It was the Hungarian 
geologist Louis von Loczy who visited Sikkim in 1878 and, on the basis of previous work 
and his own field observations, recognized for the first time huge recumbent folds or 
nappes. These had a crystalline core over 10 km thick and were thrust southwards for 
over 100 km on top of the Permocarboniferous Damudas, which again were thrust over 
the Tertiary molasse, the Siwaliks (Fig. 1). At the same time Alpine geologists were still 
struggling with the famous “Glarner Doppelfalte”, until Marcel Bertrand in 1887 
published his sweeping interpretation of the Glarus thrust without ever having been on 
the spot. Unfortunately, regarding scientific priorities, von Loczy did not publish his 
findings until 1907, nearly 30 years after his discovery. Much later E. Argand, in his 
masterly synthesis “Tectonie de l’Asie” (1924), expressed some surprisingly modern 
views, suggesting crustal collision between Gondwana and Eurasia. Ten years earlier, 
however, Colonel Burrard of the Indian Survey had on the basis of geodetic evidence 
already suggested underthrusting of India as the reason for the origin of the Himalayan 
mountains. But more than 20 years elapsed before Auden, Heim and Gansser con
vinced Himalayan geologists of the existence of large crystalline thrust sheets (Auden 
1937, Heim and Gansser 1939).
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Geological History

The present fascinating picture of the Himalaya and adjoining Tibet, the largest 
positive land mass on earth, is based on a most complex geological history (Fig. 2). 
There is hardly any doubt that the Himalayan orogen is the product of a collision 
between the greater Indian block and a complicated Eurasian mass, and we may 
subdivide the process of Himalayan mountain building into a pre- and post-collision 
phase. In pre-collision time, from the Precambrian to the end of the Palaeozoic, 
northern India was bordered by a shallow marine belt, which was called Paleotethys by 
some authors without, however, their having a precise idea of the size of this shallow 
shelf sea. It seems likely that this shelf, with no oceanic crust, was never bordered by a 
wide ocean, and that India was never far away from an Eurasian continent. An 
excellent account of this situation was recently given by J. B. Auden in his inspiring 
paper, “India’s former crustal neighbours”, published on the occasion of the Wadia 
commemoration (Auden 1981).
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Palaeogeographic reconstruction clearly shows the thick late Precambrian to 
Cambrian sediments of northern India following the pronounced Aravalli orogeny, and 
the younger Gondwana cover. These latter sediments gradually become more marine 
and the stratigraphic section more complete the further one goes to the north. This 
leads to the large sedimentary section of the northern Himalaya (Tethys or Tibetan 
Himalaya of some authors) which represents a conformable sequence from Cambrian 
to Eocene, without any orogenic break but with some marked epeirogenic uplifts near 
the end of the Palaeozonic. This event coincided with a basaltic alkaline volcanism, the 
Panjal trap, localised in the western Himalaya only. The interfingering of a Gondwana 
and a Tethyan facies is well known in the Kashmir region and has been observed on the 
north side of Mt. Everest (Mu An Tse et al. 1973). These facts clearly show that one 
cannot support the idea, often ventured by various authors, of two sedimentary basins, 
one Gondwana in the south and one Tethyan to the north, separated by a crystalline 
divide which has formed the High Himalaya. This divide did not yet exist during the 
time of deposition, but was formed much later (Main Central Thrusts), after the 
collision of India and Eurasia.

Fig. 2. Geological block-diagram of the Himalaya and Tibet. (Photoreduction colored map by A. Gansser, 
1979.)
AT Astin Tagh Ks Mt. Kailas
B Brahmaputra river L Lhasa
CL Chomo Lungma (Everest) NB Namche Barwa
D Delhi Ng Naga range
G Ganges river NP Nanga Parbat
HK Hindu Kush PA Pamir
Hu Hundes basin PI Peninsular India
I Indus river S Sutledj river
Is Islamabad SH Shillong plateau
K Kathmandu TB Isaidam basin
KA Karakorum TS Tien-Shan (southern part)
Kb Kabul
KL Kun Lun
Cr Crust: base 30 km below India, 70—75 km below Himalaya and Tibet, 30 km below Tarim basin
MTL Mantle, “obducted” along SZ and older sutures in central and northern Tibet (Kun Lun).
SZ Suture Zone, Indus Tsangpo Line, doubled in western Himalaya.
MCT Main Central Thrust, major intra-crustal fracture. (Miocene).
MBT Main Boundary Thrust, on southern molasse (Siwaliks). (Pleistocene).
MFT Main Frontal Thrust, recent events, Siwaliks thrust on Quaternary.
1 Tertiary to Quaternary acide to interm, volcanics in Tibet.
2 Transhimalayan Pluton, 110—40 my, located N of Suture Zone.
3 Siwalik Molasse in S and southern Tarim Molasse in N.
0 Ophiolites along Suture Zone.
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Structural Trends

Formation Boundaries
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Neogene Granites

Transhlmalayan Plutons

Tertiary acide Volcanics

Subrecent Volcanics

Shield Basement

by A Gansser 

Main Thrusts and Faults

Structural Map of Himalaya 
and Tibet

Secondary Thrusts and Faults

Fig. 3. Structural map of the Himalaya and Tibet. (After Gansser 1980).
CL Chomo Lungma (Everest) Ka Kabul Le Leh
Gt Gartok K Kailas Mt. NB Namche Barwa
Gi Gilgit Kt Kathmandu NP Nanga Parbat



SZ Suture Zone, MCT Main Central Thrust, MBT Main Boundary Thrust, MFT Main Frontal 
Thrust.
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Fig. 4. Geological sketch map of the NW Himalaya and Karakorum. (After Gansser 1980).
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The collision of India with the complex southern margin of Eurasia, which included 
some micro-continents of doubtful origin (today called “displaced continents”), is well 
outlined by the Peri-Indian Suture Zone. This exposes ophiolitic rocks which range 
from volcanics with pillow lavas to ultramafics with associated ophiolitic melanges and 
oceanic sediments, predominantly in the form of radiolarites. This association, in 
particular the melanges, suggests originally steep and narrow oceanic basins and not 
large oceans as frequently suggested on the basis of palaeomagnetic results. The suture 
zone can be followed over a length of 5000 km from Karachi in the SW over the Quetta 
belt (western section) to the High Himalaya (northern section) and the Arakan Yoma 
branch to the Andaman islands in the SE (eastern belt), still with well exposed 
ophiolitic melanges. In all these sections the overall composition of the ophiolites is, in 
spite of most complicated tectonics, surprisingly similar. Actually the ophiolitic belt is 
the only constant feature all along the Alpine-Himalayan orogeny in spite of the greatly 
varying fore- and backlands (Gansser 1974, 1980a).

The collision took place during the very latest Cretaceous and early Eocene, with the 
final emplacement of the oceanic rocks (ophiolites) pre-middle Eocene in the Hima
laya, while in the Middle East this process was mainly pre-Maestrichtian and in the 
Alps proper pre-UppcrJurassic and Upper Cretaceous. This phase and the subsequent 
formation of conspicuous ophiolite nappes not only characterises the Himalayan 
section but in precisely the same way occur along the Quetta belt which was never 
along the front of northwards drifting India. In all the ophiolitic nappes we note the 
curious facts that the ultramafic masses, representing mantle sections, form the highest 
structural element, underlain by the ophiolitic melanges and the oceanic volcanics.

After this major collision we note a certain calm with no orogenic activity. During 
this period the intrusion of the Transhimalayan batholiths ended all along and to the 
north of the Himalayan suture zone with pronounced volcanic activity 40 my ago (Fig. 
3). Convincing geochemical evidence shows that the Transhimalayan batholiths were 
derived by melting of a downwarped oceanic crust. This melt was intruded along the 
continental rocks of the southern Asian plate border with more or less pronounced 
contamination. The intrusions started about 110 my ago with basic, mostly noritic 
gabbros, grading over diorites to the widespread tonalites (60 my) and ending with 
granites and vulcanics of 40 my (Honegger et al. 1982). The intrusive activity was not 
continuous but occurred in various phases, well displayed in the Ladakh area with 
granites along the southern border, while south of Lhasa to the east the older, more 
basic rocks outcrop in the south and become more acid and younger in a northward 
direction. The famous granite of Lhasa is highly contaminated by Jurassic limestones 
of the northern continental crust (Academia Sinica 1980).

In the western Himalaya the suture zone consists of two sutures. The Trans
himalayan intrusions occur between a southern (Indus) and a northern (Shyok) 
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suture, the latter forming a sharp structural contact between the Himalaya and the 
Karakorum. The two sutures merge westwards towards the Kabul region where they 
are sharply cut by the N-S-trending Sarobi fault which limits the northwards directed 
Kabul spur (a possible continuation of the Indian shield) to the east. Both suture zones, 
particularly the southern one, are affected by the late N-trcnding Nanga Parbat/ 
Haramosh crystalline antiform, which runs perpendicular to the E-W-trending Ka
rakorum (Fig. 4). This remarkable structure also cuts the Transhimalayan batholith 
into an eastern Ladakh and a western Swat batholith. Both batholiths contain large 
inclusions of pre-batholithic basement, some not unlike the crystalline of the Nanga 
Parbat/Haramosh, which however is different from the Indian shield crystalline to the 
south of the suture. Most of these large inclusions still show a N-S-structural grain, 
contrasting with the E-W regional trend, and are parallel to the Nanga Parbat spur 
(Gansser 1980b). “Displaced” microcontinents of as yet unknown origin may have 
influenced the tectonic trends of this part of the Himalaya. This highly complicated 
area can hardly be explained as one large island arc (Coward et al. 1982). We have here 
one of the most fascinating and problematic sections of the whole Himalayan range.

The possible existence of microcontinents along the southern front of Tibet is 
another most important but still unsolved problem. We know that a large slice of 
southern Tibetan crust, the Nyenchcn Tangla belt (Fig. 3), is separated by fault zones 
and sporadic ophiolite outcroups — some shown on the new 1:1 500000 map of Tibet 
(1980) — from the northern part of Tibet, suggesting a northern suture zone which 
however does not reach the importance of the Tsangpo/Indus Suture to the south. 
From the latter suture, the northern suture branches off NW ofGartok were the Indus 
river turns east towards its sources north of Kailas mountain. It has recently been 
investigated by French-Chinese teams to the north of Lhasa (E.U.G. abstracts 1983). 
The eastern continuation of the Nyenchen Tangla belt is the Lhasa block of the French 
teams, separated from the Nyenchen Tangla belt by the abnormally NE-striking 
Precambrian Tangla range.

Returning to the Transhimalayan batholith we note that the intrusions and volca
nism were followed by a very rapid uplift, so that the Transhimalaya dominated the 
Himalaya, forming an important watershed. The remarkable uplift and consequent 
erosion was responsible for the formation of a molasse, deposited along the south side of 
the range and transgressing with a large basal conglomerate directly onto the plutonic 
rocks. Volcanic pebbles increase in abundance upwards and dominate together with 
some Lower Eocene limestones which give a lower age limit for this upper part of the 
molasse. The average age is most likely Oligocène. This molasse is particularly well 
developed in the central part of the over 2000 km long Transhimalaya and dominates in 
the Kailas mountain, a most striking relic of 4000 m of near-horizontal conglomerates 
and subordinate sandstones sitting on the tonalite and granites. This Kailas molasse is 
surprisingly thickly bedded in contrast to similar molasse in the Ladakh region (Fig. 5).
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Fig. 5. The very thickbedded lower conglomerates of the Kailas Molasse, view eastwards, summit of Kailas to 
the left. (Fot. A. Gansser).

With its 6800 m the Kailas is most likely the highest molasse mountain known and 
because of its extraordinary shape (Fig. 6) it has become the most holy mountain of 
Asian religions (Allen 1982). It has been widely illustrated in old wall paintings 
together with its surrounding monasteries and the holy lakes of Manasarovar and 
Raksas, also important places of worship (Fig. 7). Not only the form of Kailas but also 
its geographical position is striking: all the largest rivers of the Himalaya and Trans- 
himalaya have their sources near this mountain, the Indus in the north, the Sutlcdj in 
the west, the Tsangpo (Brahmaputra) in the east and the Ganges in the south (Fig. 8). 
The fact that in the old scripts Kailas was regarded as the centre of the known world has 
its geographical meaning.

After the deposition of the Kailas molasse and a period of relative orogenic calm, 
India reassumed its northward drift, but since the suture zone was welded and fixed, this 
movement was compensated by intracrustal adjustments. In the Miocene we recognize 
the Main Central Thrust along which a crystalline slab more than 15 km thick and its 
Tethyan sedimentary cover moved more than 100 km over the metasediments of the 
Lower Himalaya. At the base of the MCT we note a highly complicated zone of 
imbrications, particularly well exposed in Nepal, from which larger secondary thrust
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Fig. 6. The Mt. Kailas, seen from the N. The most holy mountain in the world, k —Kailas Molasse, 
g = Transhimalayan granite to tonalite, m = local moraines. (Fot. A. Gansser).

sheets developed, such as the crystalline thrust of Almora in the Kumaon Himalaya. A 
further pulse from India was taken up by the Lower Pleistocene Main Boundary 
Thrust further to the south, bringing the Lower Himalayan rocks over the frontal 
molasse, the Plio-Pleistocene Siwaliks. At present the Siwalik belt is steeply thrust 
along the Main Frontal Thrust over the Quaternary, tilting and warping the foothill 
deposits, in an area outlined by recent seismicity. These facts clearly reveal the 
intracrustal activity becoming younger and shallower from north to south (Fig. 3).

The regional Himalayan metamorphism coincides with the renewed Miocene 
orogeny. It is interesting to note that this metamorphism affected mostly the already 
metamorphosed rocks dating from late Precambrian events. Rarely it involves younger 
sediments, such as the lower Mesozoic of the western Himalaya (Nun Kun region in 
Ladakh - Honegger et al. 1982). In the adjoining Spiti basin the transgressive Ordovi
cian sediments are non-mctamorphic and enclose Precambrian metamorphic rocks in 
their basal conglomerates, proving without any doubt the presence on an old pre- 
Himalayan metamorphism (Fuchs 1982). The Himalayan metamorphism, which in 
the Lower Himalaya overprints the late-Prccambrian sediments, is of anchi to high 
greenschist facies. The metamorphic grade increases towards the inner and higher
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Fig. 7. Old wall painting of Mt. Kailas (upper left) and lake Manasarowar (bottom center) with monasteries 
which belonged to Bhutan, 1000 km away! Fotographed in a small village temple in Tinkar, NW Nepal, by 
A. Gansser.

units, displaying a remarkable reversed metamorphism. Within the crystalline thrust 
sheets of the Higher Himalaya only the lowest sections expose a reversed metamor
phism (kyanite/staurolite to sillimanite); the metamorphic grade decreases again 
gradually towards the overlying Tethyan sediments. In the high-grade crystalline units 
it is most difficult to distinguish the Himalayan metamorphic overprint from Pre
cambrian metamorphic events. The existence of the latter is furthermore documented 
in a few places by radiometric ages of 1800 and 1400 my (Bhanot et al. 1977). As a final 
and closing phase of the Himalayan metamorphism we note the intrusions of leuco- 
granites in the High Himalaya which outdate the metamorphism and cut all visible 
structures. They usually intrude the highest part of the range from Nanga Parbat in the 
west over Badrinath, Manaslu, Shisha Pangma, Makalu to the Bhutan peaks in the 
east. Over a distance of nearly 2000 km their composition, age and mode of intrusion is 
surprisingly constant (Le Fort 1973). They usually intrude high-grade metamorphic 
rocks but can reach locally into the Mesozoic sediments of the Tethyan cover, where
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Fig. 8. The unique posi
tion of Mt. Kailas, the 
source of all the major 
Himalayan rivers. The 
“center of the world”.

they produce a marked contact metamorphism. The extremely high (R7SR/86Sr) ratio 
suggests melting of old sialic crust which distinguishes the leucogranites clearly from 
the Transhimalayan intrusions (Dietrich and Gansser 1982). The leucogranites close 
the Himalayan orogenic and metamorphic events and initiate the regional uplift of the 
range, the morphogenic phase.

Morphogenic phase

This regional uplift involves not only the Himalaya and Transhimalaya but also the 
large adjoining mass of Tibet to the north as well, an enormous area of over 2 500000 
km2. New investigations of flora and fauna from terraces now between 5000 and 6000 m 
a.s.l. on the northern slopes of the Himalaya in the Sisha Pangma region revealed 
subtropical and tropical species, suggesting uplifts since the early Pleistocene of4—5000 
m (Hsu et al. 1978). Well known are the famous Karewa lake beds of Kashmir, which 
also suggest subreccnt to recent upplifts in the western Himalaya (De Terra and 
Paterson 1939). Already over 100 years ago, in the gravel terraces of Hundes, nearly 
5000 m up in the Tibetan part of the northern Central Himalaya, Lydekker found 
rhinoceros bones in beds which, in spite of having been uplifted several thousand 
metres, are still perfectly horizontal (Lydekker 1881). These gravel horizons arc cut by 
steep gullies, and in the rock walls as well as on steep cliffs there arc remnants of 
monasteries from the time of the kings of Guge. They contain the oldest and finest 
buddhist wall paintings known (Fig. 9), which, unfortunately, are slowly deteriorating 
(Tucci 1937).
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Fig. 9. The eastern end of 
the large Hundes basin 
with Quaternary terraces 
rich in old remnants of 
cave monasteries. In the 
central basin the horizon
tal gravels contain tropi
cal mammal bones, now 
at 4—5000 m elevation. 
(Fot. A. Gansser).

New results on precise levelling and triangulations which may provide quantitative 
data on recent uplifts are not yet available. Fault zones along the foothills show 
movements more of a horizontal than a vertical nature. The recent measurements of 
Everest (Chomolungma) suggest increasing height, but previous data were not too 
reliable. In his last publication of 1982, Eric Norin, who died at an age of 87 years, 
discussed the triangulation work of the 1932 Swedish expedition into western Tibet. 
Between 1857 and 1861 the Survey of India under excellent British surveyors carried out 
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triangulation work over Lch into SW Tibet. The subsequent, careful Swedish tri
angulation work of 1932 found a general increase of about 37 m and this over a span of 
only 71 years. This would give the incredible uplift rate of about 0.5 m per year for this 
particular area. This is far in excess of a reasonable morphogenic uplift rate for the 
whole Himalaya and Tibet, covering 2 500000 km2, which is assumed to be about 1—1 */2 
cm year. Accepting such a figure one has to realize that the morphogenic uplift was 
never uniform in time nor in place. The present rates, at least for the Himalaya, are 
probably slowly increasing.

The effect of this young, regional uplift in connection with the later glaciations is of 
particular interest. According to Li and Cheng (1980) and recently Kuhle (1982), the 
Pleistocene snow line was at about 3800 m in northern Tibet and was lower along its 
southern border. This old snow line level is lower than the average height of the plateau 
(4200-5200 m) which rises in its central part as well as at its border into mountains 
between 6000—8000 m, all highly glaciated and with some perfectly preserved plateau 
glaciers (Landsat photos). These facts suggest that during the largest ice age (the third 
or second last period) a great part of the Tibetan plateau was covered by a widespread 
inland ice type glaciation (Kuhle 1982). An extended ice cover was already suggested 
for the eastern Karakorum and NW Tibet by Norin on the basis of results from his 
expeditions from 1927 to 1935 (Norin 1982). After the skrinkage of the inland ice cover, 
great depressions must have been preserved for some time by dead ice bodies which 
began melting along their border, giving rise to marginal lakes, the sediments of which 
can still be observed high on the flanks of such basins. This is even the case in large 
valleys such as the upper Indus. Most of the numerous present Tibetan lakes resulted 
from melting of such an ice cap and were originally fresh water bodies. Judging from the 
present lake sediments some must have had a very large extension. During their rather 
short existence of 10000—20000 years they gradually became brackish and finally salty. 
The eventual drying up of those water bodies can be seen on the Landsat photos which 
show many strand terraces surrounding the lakes concentrically.

This partly ice covered highest and largest land mass on our globe, situated in the 
northern desert girdle, must have influenced the Pleistocene climate to a great extent. 
The strong irradiation effect may have changed the higher atmospheric circulation and 
even been responsible for the drying up of the Sahara (discussions during Tibet 
conference 1980). The main change to present conditions began about 12000 years ago 
at the end of the last ice age. This last stage was however not very pronounced and many 
of the Tibetan lakes originated already during the last interglacial period. Lake 
sediments show sometimes the effects of an overburden of lateral glaciers of the last 
stage (Bürgisser et al. 1982).

The foundation of famous monasteries is sometimes related to mysterious, now 
vanished lakes. The old history of the well known Lamayuru monastery in the Ladakh 
region is based on a mystic lake, which was the abode of the bad Naga spirits. Once a
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Fig. 10. Lake sediments 
which indicate the ex
istence of a former 
Lamayuru lake. They 
have been strongly eroded 
with a 600 m deep gorge 
draining towards the 
Indus river. (Ladakh) 
(Fot. A. Gansser).

famous lama landed on a small island in this lake. He made offerings to appease the bad 
spirits and drained the lake thus preparing the site for this famous monastery. Old lake 
sediments are still present in this area, preserved 600 m above the level of the Indus 
river (Fig. 10). Unique is the rare depiction of boats surrounded by bodhisattvas in the 
Alchi monastery, the most famous and oldest temple of the Ladakh region (Fig. 11).
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H uman history

Uplift, glaciation and subsequent deglaciation in the Himalaya and Tibet must have 
caused special conditions as far as the flora and fauna were concerned. Survivals from 
the central ice plateau are most unlikely and the post ice age immigration must have 
come from the peripheral and more favorable regions. Unfortunately practically 
nothing is known of this early beginning. One realizes today how flora and fauna have 
adapted to the height, insolation and temperatures. The Himalayan traveller is struck 
by the adapted form of rubarb or the fury aspect of a Saussure a, living above 4500 m, to 
give just two examples. Even less is known of the human migrations and populations of 
the High Himalaya and Tibetan plateau. Archeological work has hardly begun. Of 
interest are the human artifacts in the Karewa lake beds of Kashmir, believed to be 
older than the last glaciation and the latest uplift of the Himalaya (De Terra and 
Paterson 1939). During the time of Peking man, travelling over the Himalaya must have 
been easier and the subtropical hipparion grazed happily on both sides of the range.

Fig. 11. The presentation ofboats in the middle of Bodhisattwas in the hall of the Alchi monastery, the oldest 
buddhistic temple in Ladakh. (Fot. K. Riklin).
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Between these meagre paleolithical data and 600 AD exists a large historical gap. It 
is the time when the animistic Bön religion, rich in sagas, was widespread in the 
northern Himalaya and Tibet. Many of the sagas were orally delivered, often in the 
form of songs, still popular to the present day. Most famous of all are the songs of the 
Geza Epos, well known today in the Bhutan Himalaya, which are a treasure of old 
religious history (Olschak 1979). The old sagas also tell us of the famous flood, the great 
event known all over the world, even in such remote regions as in the South American 
jungles. They tell us that Tibet (and the northern Himalaya) was covered by a big lake 
and that a “Buddha of that period” had mercy upon the land and with his sword cut a 
gap into the mountains of SE Tibet, draining the lake (Bell 1928). This gap is preserved 
today in the unique gorge of the Tsangpo river, where it cuts the 7800 m high Namche 
Barwa mountains in one of the wildest canyons in the world, and even today only partly 
explored. The flood story of Tibet refers to the lakes formed after the melting of the ice 
cap. It is certainly not related to the so-called Tethyan sea which once covered the 
Himalaya and Tibet, often referred to in interpretations of old texts. It is well known 
that most of the Himalaya and practically all of Tibet became land after the Tethyan 
sea vanished in the Middle Eocene, 40 my ago, and that since that time the whole area, 
not yet uplifted to its present height, was a large continent.

According to the old sagas, the Tibetans originated in the Yarlung valley. This 
drains the mountains to the E of the Bhutan Himalaya and its river flows northwards 
into the Tsangpo, southeast of Lhasa. The first Tibetans were believed to have lived in 
caves in this valley, which are still venerated today. 1 hey resembled large langoor 
monkeys more than human beings, but they cut their tails and began to populate the 
area. The first Tibetan Kings are reported from the Yarlung valley and there they built 
the first towered castle, the prototype for the dzongs, the famous fortress monasteries of 
the Bhutan Himalaya. This outstanding building, the oldest in Tibet, still existed and 
was photographed by Ernst Krause of the Schäfter expedition in 1938, but after the 
Chinese invasion of Tibet it has been completely destroyed. In the Lower Yarlung 
valley the grave hills of the ancient kings are still preserved, similar to the “tepes” in the 
Middle East. They seem hardly touched by archeological investigations. The famous 
5th Dalai Lama, the founder of the Potala in Lhasa and the most outstanding figure in 
Tibetan history, was born in 1617 in the Yarlung valley. According to old legends even 
the eastern Himalaya was populated from the Yarlung region.

'The northern Bhutan Himalaya is dominated by a famous peak, the Masang Kang 
(Fig. 12). Its name relates to the Masang tribes, the mythological forefathers of the 
Tibetans, whose descendents, coming from SE Tibet, settled in NE Bhutan. Gesar, the 
hero of the epic songs, is said to be a son of the Masangs, as recorded in precious old 
block prints (Olschak 1979). It may not be a mere coincidence that just at the foot of the 
Masang Kang we find the small village of Laya at 3900 m elevation. Here the 
inhabitants are strikingly different from the rest of the Bhutanese mountain people.
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Fig. 12. The holy Masang Kang seen from the Toma La at the Tibetan border in the northern Bhutan 
Himalaya. The highly glaciated 7200 m high peak is the abode of the mythological Masang tribes which are 
reported to have populated the Bhutan Himalaya. (Fot. A. Gansser).

The women wear long dresses of sheep and yak wool, with a peculiar colour design. 
Contrasting with other Bhutanese they have long hair and speak a special dialect (Fig. 
13). Their buddhist religion seems highly mixed with animistic Bön elements. Could 
these little known Laya people be some remnants of the famous Masang tribes?

In the western Himalaya and adjoining western Tibet we may find some even earlier 
migrations. Since ancient times western Tibet was known for its gold digging. The 
legends of gold-digging ants were already mentioned by Herodot (Lindcgger 1982). 
They tell of huge ants “smaller than dogs but larger than foxes” which dug gold nuggets 
from deep narrow holes. Giuseppe Tucci discovered near Jiu monastery at the Man- 
asarowar lake old gold-digging sites, exposing many deep narrow holes which re
minded him of giant ant holes, “tanti formicai” (Tucci 1937). The Buddhist authorities 
in Lhasa later forbade mining in Tibet. Along the middle Indus river and in the Hunza 
region there exist old rock carvings and paintings. The black rocks, covered by desert 
varnish along the rivers, present an ideal surface to carve and scratch drawings and 
inscriptions. These petroglyphs have been recently investigated by Karl Jcttmar, who
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Fig. 13. The women of 
Laya, a small village at 
3900 m in northern 
Bhutan. It lies at the foot 
of the holy Masang Kang. 
These unique people may 
be the remnants of the 
mythological Masang 
tribes? (Fot. A. Gansser).

discovered over 1000 pictures and inscriptions spanning a time interval of over 3000 
years, not unlike visiting cards of the passing caravans (Jcttmar 1981) (Fig. 14). 
Surprising arc old inscriptions dating from the time of the Persian kings during the 
reign of Alexander. The results of these current investigations will eventually shed new 
light on the migration and population of the western Himalaya and Tibet, and tell of 
the caravans which travelled from NW India through the Baltistan mountains along 
the Indus and Hunza rivers towards Tibet. An interesting relic may be the Hunza 
people which kept their own special language. One may even venture the suggestion 
that this old trail, which joins the »silk road« in the north, may actually be a revival of 
much older, possibly even paleolithic migration routes from Kashmir (Karewa lake 
beds) through the western Himalaya at a time when the mountains had not yet reached 
their forbidding height.

In historical time, the great elevation of Tibet and the wild mountain ranges of the 
Himalaya were no longer an impassable barrier for the inhabitants which populated 
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these areas. With the taming of the wild yak they found an incredible domestic animal 
which carries heavy loads, climbs like a goat over the highest passes ploughing through 
deep snow, but also capable of ploughing the fields. Its wool is used for blankets, ropes 
and tents, it has a particularly rich milk for butter and cheese, and its yak dung is a 
precious fuel in regions above the tree line. It feeds very frugally, but can also be eaten 
itself when necessary. Along steep rock slopes ingenious trails were built with dry stone 
clinging to inclined rock faces. Most important of all was the construction of hanging 
bridges which cross the wildest rivers in the Himalayan mountains. Originally “inven
ted” in China, they were known already over 2000 years ago from the eastern Himalaya, 
built of bamboo and liana (Fig. 15). After the 6th century iron-chain hanging bridges

Fig. 14. A buddhistic stu
pa drawn on gabbroidic 
rocks at the Indus river 
near Chilas (Baltistan). 
Here and in the Hunza 
region Karl Jettmar has 
studied over 1000 draw
ings and inscriptions, 
spanning a time of 3000 
years. They suggest a 
very old migration route 
to western Tibet. (Fot. A. 
Gansser).
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Fig. 15. A primitive hang
ing bridge in the north
eastern Bhutan Himalaya. 
This bridge is built in a 
primitive way, only by lia
na and bamboo, a sys- 
them over 2000 years old. 
(Fot. A. Gansser).

began to appear. They were propagated by the Bhutanese lama Thang-stong Gyalpo 
who used an ingenious method of welding the various chain links. The locally mined 
iron was melted into rods. These were forged to chain links and the links where welded 
together, probably on the spot. The analysis of such a welding seam (at the ETH in 
Zürich) showed an arsenic content of 2.6%. Arsenic lowers the melting temperature 
but produces a very hard welding junction. It is most surprising that this completely 
forgotten method was used in these remote areas (Epprecht 1979). Hanging bridges are 
up to now still the best system, considering the irregular floods of the wild Himalayan 
rivers.

Today we note a new type of migration. It has already invaded the western and 
central part of the Himalaya and now infiltrates also the eastern part and even to some 
extent southern Tibet. Is is international tourism with trekking and mountaineering, 
mostly in groups littering their paths with modern sediments. A certain contamination 
of the local population seems unavoidable, and it may be to the detriment of its 
important heritage, still documented in the numerous religious centres. It is a heritage 
of outstanding importance, considering the ill-fated development of our civilisation. 
Modern science may be able to preserve and to better understand those valuable 
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documents, many still hidden in block prints of remote monasteries but many more 
destroyed.

The visitor who enters the inner courtyard of the famous Paro Dzong, the monastery 
fortress in the western Bhutan Himalaya, is struck by a large wall painting. It 
represents a mandala of outstanding interest. Within a frame of red flames it shows the 
cosmic rings suggesting the planetary system or the modern picture of an atom. Phis 
Buddhist iconograph is the more astonishing since its conception is over 1000 years old 
(Fig- 16).

Acknowledgement: T.C. R. Pulvertaft kindly improved the original English manuscript.

Fig. 16. The “Cosmic Mandala” in the Paro Dzong, western Bhutan Himalaya. It represents a strikingly 
modern picture of a forgotten wisdom from ancient times. (Fot. U. Markus-Gansser).
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